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Parameters of the linear time invariant (LTI) dynamic system using extended Kalman 
filter (EKF) are identified in this work.  The efficiency of EKF for parameter 
estimation of LTI system is studied.  For this purpose, a three-story steel frame is used 
in the laboratory, and the recorded ground motion is applied to measure the 
acceleration response at different floor levels.  Using these responses, the EKF-based 
predictor-corrector algorithm is used to identify the modal parameters.  It has been 
observed that the EKF-based identification scheme can converge to different system 
matrices (i.e., mass and stiffness) in different experiments for the same structure.  
However, their eigen values (i.e., natural frequency and mode) remain the same.    

Keywords: Extended Kalman filter, Non-stationary excitation, System identification, 
State estimation. 

 

1 INTRODUCTION 

The Kalman filter (KF) (Kalman 1960), essentially a method of sequential least-squares 
estimation, has been successfully applied in many field and many applications in 

structural dynamics, some of which are discussed here.  Hoshiya and Saito (1984) 

introduce this method to evaluate structure conditions.  The original KF method is 
applicable to systems with linear sate vector so, more specifically, they use an extended 

Kalman filter (EKF) proposed by Kalman and Bucy (1961) for non-linearly-related 

state vectors.  In their study, they used a three-degrees of freedom system (3DOF) to 
identify the stiffness and damping, and also used an equivalent nonlinear model to 

identify the hysteresis parameter of the system.  In this study, they proposed using a 

forgetting factor for some parameters to get better convergence of parameters.   Though 

they did not give any formulation to evaluate this forgetting factor (except with 
different values for it), they present good results.   In 1994, Xia et al. give a proposal to 

formulate the calculation for this fading factor or adaptive factor.  In this formulation, 

residual covariance is minimized for some targeted parameter.   Thus, its memory of 
last value is faded.  The type of this factor is exponential, i.e., the value is reduced as 

more samples are contributed to the filter. 

In 1994, Lin and Zhang successfully applied the method of global iteration 
proposed by Hoshiya and Saito for the Bouc-Weng nonlinear model, where the input is 

simulated earthquake data.  They show that with a high value of weight, the obtained 

result is more realistic.  Instead of applying the factor in a covariance matrix, Sato and 

Sato (1997) suggest using a neural network method, where the observed and estimated 
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vectors will be factorized after the first iteration to obtain good convergence.  To prove 

this, they used a 2DOF nonlinear system and updated the state vector.  In their work 
they also presented their results for a building of 8DOF with nonlinearity.  In this case, 

estimated displacement and force-displacement hysteresis were compared with recorded 

displacement and force-displacement hysteresis, obtaining a physically-affordable 

result.  This method was also used in parametric estimation and damage identification 
for different models by Corigliano and Mariani (2004), Yang et. al. (2006), Gao and Lu 

(2006), and Ghanem and Ferro (2006).   

According to the method proposed by Ghosh, Roy and Manohar (2007), there is no 
need to evaluate Jacobian matrix in each iteration.  They gave two methods:  locally- 

transversal linearization (LTL) and multi-step transversal linearization (MTrL).  In the 

LTL method, the nonlinear states or vector field was replaced by a time-invariant 
conditionally-linearized vector field for a time step, and then KF estimation was 

applied.   In their second proposal, the filter worked over multiple time-steps, finding 

the system transition matrix of the conditionally linearized vector field through 

Magnus’ expansion.   Though they did not check for ultimate convergence, in their 
study they showed this method is less sensitive to a computational time step.  In their 

study only the time invariant parameter is considered, so there is no insight in case 

things like sudden parameter property changes happened.   
Tipireddya, Nasrellah, and Manohar (2009) showed their results on parameter 

identification under a moving load and an incremental static load.   For moving-load 

analysis, a point load over a beam was taken.  In the case of incremental static load, a 
truss was considered.  As a result, the reaction due to the moving load was estimated.  

In addition to the methods by Ghosh et al. above, Saha and Roy (2009) proposed 

another new approach to avoid calculations of Jacobian matrix, which is derivative free 

local linearization (DLL).  To establish this method, one SDOF oscillator and 3DOF 
shear frame building with constant parameter was taken.  Their study showed that more 

efficiency is achievable with a higher order DDL.   

Zhou, Wu, and Yang (2008) used a weighted EKF method over experimental 
results of a 3DOF system, where some system property changes with time.  For their 

study, they built a three-story shear frame model and added an external device to 

change the stiffness property.  They used white noise and ElCentro and Kobe 

earthquake records as input.  At a certain time during their experiment, they triggered 
the external device to change the stiffness of the model.  In their result, they identified 

the change in stiffness property.    

The main objective of this paper is to apply EKF for a non-stationary earthquake, 
and show that the evaluated element properties are dependent on the responses, i.e., the 

convergence values change from response to response.   In this study it is also shown 

that the combined effects of these different elementary properties are nullified in overall 
structural behavior.  With the different values of elements’ stiffness, the natural 

frequencies converge at almost same the value irrespective of response sources.         
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2 OVERVIEW OF EXTENDED KALMAN FILTER       

From a general scenario, let us consider a multi-degree of freedom dynamic system 
whose equation of motion is expressed as: 

   ̈( )    ̇( )    ( )   { } ̈  (1)  

where   ,   and   are mass, damping and stiffness matrices respectively.   In Eq. (1)  ̈, 

 ̇ and   are acceleration, velocity and displacement respectively, where   

[             ]
  and   is degree of freedom.   The vector { } and  ̈  represent the 

influence vector and ground excitation respectively.   The governing equation of motion 

in Eq. (1) can be represented in state-space in the following form: 

 
  ( )

  
  (     )   ( ) (2)  

where   is external force in dynamic system (here it is  { } ̈ ).  It may be noted that the 

dynamic state in Eq. (2) is given by: 

  ( )  {    ̇ }  (3)  

The respective observation equation is given by: 

       (              )      ( ) (4)  

where      is observation vector at     .  The covariance matrix of measurement noise 

(i.e.     ) is expressed as  [    
 ]        and it is Gaussian independent and identical 

in nature.   Here,  [ ] represents expectation operator and     is the Kronecker delta.  To 

apply estimation theory in EKF, the non-linear term ( (     ),  (     )) in Eq. (2) and 

(4) are linearized by Taylor’s expansion around the estimated state ( ̂) of each iteration.  

In this case, Taylor’s expansion up to second order is considered, and  ( | ) and  (   | ) 

is Jacobian matrix of state and observation equation respectively.  In each iteration, the 

estimation state value  ̂(   |   ) is evaluated by minimizing the sum square error of 

observation      and predicted state  ̂(   | ).   In an iterative way, one may write this 

relation as given by: 

  ̂(   |   )   ̂(   | )   ̅   [      ( ̂(   | )           )] (5)  

It may be noticed that above equation is similar to actual Kalman filter as in Eq. (5).   

Here,  ̂(   | ) is the estimated state at (   )th
 time instant which is given by: 

  ̂(   | )   ̂( | )  ∫  ( )  
    

  

 (6)  

The Kalman gain in Eq. (19) is evaluated by: 

  ̅     (   | ) (   | )
 [ (   | ) (   | ) (   | )

      ]
  

 (7)  

In the above equation  (   | ) is the error covariance matrix of  ̂(   | ) and it is given by: 
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  (   | )          ( | )        ̃  (8)  

Here,        is the state transition matrix of the linearized system, evaluated as:  

               ( | ) (9)  

where    represents the unit matrix.  The error covariance matrix is given by: 

  ( | )  [    ̅  ( |   )] ( |   )[     ̅  ( |   )]
 
  ̅    ̅ 

 

 
 (10)  

Finally to identify the parameter, the state vector is modified with unknown parameters 

as follows: 

  ( )  {    ̇     }  (11)  

in which   [             ]
  is the   unknown system parameters.  This can include 

any system parameter, e.g., stiffness, damping etc.   With the augmented state vector, 
the EKF algorithm mention in Eq. (2) and (10) are used to identify  .    

3 NUMERICAL RESULTS AND DISCUSSION 

To execute the presented algorithm, a three-floor steel shear frame laboratory model 

was assembled.  This model was tested on the shake table and applied with a past 
earthquake accelerogram at its base.  The laboratory model had a floor plate of     

       mm and a column of           mm (Figure 1).  The base was rigidly 

fixed to the shake table to smoothly transfer the vibrating motion to the model.  For this 
system, system parameters were evaluated by finite element modeling (see Table 1).  

For this experiment, El Centro 1940 earthquake motion was applied to the model.  For 

simplicity in application, the recorded ground motion was given a shorter time period 
(Figure 2a).  The response due to this excitation was recorded by a force-based 

accelerogram at each floor level.  On this recorded acceleration response EKF 

algorithm was applied, estimating the acceleration.  Both recorded and estimated 

acceleration for the top floor are shown in Figure 2b.  From this figure it is clearly 
visible that the state is perfectly identified by this algorithm.   

As given in Eq. (14), in parallel to state updating, system parameters were also 

evaluated. In this identification technique, the main concentration was on three 
stiffnesses of the model.  For identification of stiffnesses, initial value and error 

covariance were taken at 60,000 N-m/s and 10
6 

respectively.  Figure 3 shows the 

convergence of stiffness.   In the end, the stiffness value converged at 51,770, 57,267, 

and 66,108 N-m/s.  As the stiffness value was evaluated, the natural frequency was also 
calculated at each step with the identified stiffness.  In Figure 4, estimated natural 

frequencies are shown with original values.   From this figure, it is observed that after 

successful completion of the algorithm, the evaluated natural frequencies were 4.2547, 
12.4092 and 18.0384 Hz.   In case of identified stiffness, compared with the theoretical 

value, there were errors of 23.3%, -25.5% and -11.6% respectively for three stiffnesses.  

In contrast, the errors for the three natural frequencies were 2.4%, -3.1% and -9.1% 
respectively.   
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With the same input and initial conditions, this test was repeated three times and the 

results summarized in Table 1.  From Table 1, it is clear that with same input and initial 
conditions, for a given system the convergence values of stiffness varies from response 

to response.  On the other hand, the natural frequencies almost gave the same results for 

all responses.  This happened because a system can be represented by different 

combinations of element stiffness matrices, and eigen values obtained from these 
combinations represent the same natural frequencies.   In that case, the eigen vector will 

differ from case to case.    

 

Figure 1.  Laboratory model. 

 

 

Figure 2.  (a) Base excitation, (b) Recorded and estimation 

response of top floor. 
 

 
 

                   Figure 3.  Estimated stiffness values. 

 
 

  Figure 4.  Updated natural frequencies. 

Table 1.  Identified system parameters. 

 

Parameters Original 

values 

Estimated Parameter 

Test 1 Test 2 Test 3 

   (N-m/s) 41987 51770 48908 50691 

   (N-m/s) 76842 57267 61324 56602 

   (N-m/s) 74812 66108 66480 67826 

    (Hz) 4.1565 4.2547 4.2289 4.2248 

    (Hz) 12.8093 12.4092 12.3916 12.4208 

    (Hz) 19.8511 18.0384 18.3311 18.0848 
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4 CONCLUSION 

In this study, the applicability of EKF is shown for non-stationary type signals in 
practical scenarios.   It was observed that for state updating, this method was perfect 

irrespective of the source of response, but from the presented results it was clear that in 

the EKF algorithm, the identified stiffness values were not so conclusive.   For the same 

structures, all other constraints being equal, these values can change from response to 
response.   However, identified natural frequencies obtained from different response 

gave almost the same result.   This happens because, for any given system, one can get 

different global system matrices with different values of element properties, and all of 
these system matrices will give the same natural frequencies.      
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