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This study focuses on a crack mechanics model—an infinite center-cracked concrete 
panel with a steel bar across a crack loaded by uniform tensile stress, under which the 
slip between reinforcement and concrete is neglected and the force produced by the 
reinforcement is regarded as a centralized force to close the upper and lower surface of 
the crack.  The critical sizes of the fracture process zone (FPZ) are obtained by the use 
of a power-exponent tensile-strain softening model under the maximum tensile stress 
criterion and the maximum tensile strain criterion.  The results show that the critical 
sizes of fracture process zone at both crack tips decrease with the increasing steel bar 
area, but the distance between the reinforcement and the crack tip or the decreasing 
Poisson ratio increase with the increasing of the tensile-strain softening index. 
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1 INTRODUCTION 

The fracture behavior of concrete is mainly influenced by the fracture process zone 
(FPZ).  The FPZ size ahead of the concrete crack can be measured through various 
experiments – e.g., the laser speckle method or acoustic emission and photo elastic 
coating – but satisfactory results cannot be obtained because the complexity of concrete 
cracks.  During the past few decades, many models, e.g., the fictitious crack model 
(Hillerborg 1980), the crack-band model (Bazant et al. 2007), and the Duan-Nakagawa 
model (Duan et al. 1988), have been proposed to study FPZ, increasing the 
understanding of the concrete fracture process.  The critical sizes of FPZ for the 
concrete were derived from local solutions, based on the Westergaard stress function, 
with the secondary elastic crack tip stress (Duan et al. 2013). 

It has been a topic of extensive research to study reinforced concrete members with 
low reinforcement ratio by fracture mechanics.  Zhao et al. (1994) derived an integral 
equation for reinforced concrete plates with cracks, solved the stress intensity factors of 
the plate by numerical methods based on linear elastic-fracture mechanics, and 
discussed the main effects, such as the ratio of steel and the length of crack and bond-
slip rigidity, on the anti-cracking behavior of the plate.  

This study is focused on a crack-mechanics model—an infinite center-cracked 
concrete panel with a steel bar across the crack loaded by an uniform tensile stress σ at 
infinity, which is assumed to behave elastically everywhere except inside the FPZ.  In 
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this paper, the slip between reinforcement and concrete is neglected and the force 
produced by the reinforcement is regarded as a centralized force to make the upper and 
lower surface of the crack closed.  The problem shown in Figure 1 (a) can be modeled 
as Figure 1 (b).  

Based on the Westergaard stress function with the secondary elastic crack tip 
stress, the critical sizes of FPZ are obtained by the use of a power exponent tensile 
strain softening model under two criteria:  the maximum tensile stress criterion and the 
maximum tensile strain criterion. 

 

 
 

Figure 1.  The problem and its mechanical model (a)(b). 
 

2 BASIC EQUATIONS 

It was assumed that the steel bar area is so small that the steel bar yields before the 
matrix failure.  It was also assumed that the steel bar is the ideal elastic-plastic material 
with yield stress fy in this paper.  So the Westergaard stress function of the model ahead 
of reinforced concrete FPZ in Figure 1(b) can be written in the form: 
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where z=x+iy is the complex variable measured from the right crack tip for this 
analysis; KI1 and KI2 are the usual stress intensity factor, KI1=σ(πa)(1/2), 
KI2=P((a+b)/((a-b)πa))(1/2); a is the total half-crack length; P is the centralized 
force that the steel bar applies to concrete; P= fy A, A is the steel bar area; b ranged 
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from -a to a as a coordinate value of the steel bar center in the coordinate x-y1 
system. 

Taking the first and the secondary elastic crack tip stress, the Westergaard stress 
function is: 
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After derivation of equation (3), then: 
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For the opening mode (Mode I) crack, the stresses are determined by the 

Westergaard function, Z(z), as follows: 
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In terms of polar coordinates (r, θ), substituting equation (3) and equation (4) into 

equation (5) , the stress components ahead of the crack tip can be obtained as: 
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The stresses at the crack tip are: 
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3 THE ANALYTICAL EXPRESSION OF CRITICAL SIZE OF FRACTURE 

PROCESS ZONE  

In the paper, the analytical expression of critical size of FPZ is obtained based on three 
assumptions: 1) The FPZ ahead the crack tip is a band distribution along the crack 
direction; 2) Within the FPZ, the stress decays from σu to zero at the tip of the traction-
free crack; and 3) the rate of decay is consistent with the stress-strain relationship of the 
concrete, assumed to be a power exponent expressed as: 
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where σu is the ultimate tensile strength of concrete; n is the concrete tensile-strain 
softening index ahead the crack tip; and εu is the ultimate tensile strain of concrete.  

Along the direction of crack, the σy ahead the crack tip for the mode I crack can be 
written as (Schmidt et al.1980): 
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where rp is the size of FPZ.  
It is assumed to behave elastically everywhere except inside the FPZ.  Similar to the 

Dugdale model, the stress singularities assumed in linear elastic fracture mechanics can 
vanish from the crack tip, and the FPZ can be formed (i.e., the process of decreasing 
traction with increasing opening). 
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Along the direction of cracks, the analytical expression of the critical size of FPZ 
can be obtained by substituting equation (6) with equation (10): 
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Substituting the critical values of C1 and C2 into equation (11), the analytical 
expression of the critical size of FPZ under the maximum tensile stress criterion and the 
maximum tensile strain criterion can be obtained: 
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 (the maximum 

tensile-strain criterion, i.e., plane strain); KI1c is a quantity related to the fracture 
toughness of concrete; KI2c is a quantity related to the fracture toughness of the steel 
bar; and ν is the Poisson ratio. 

The critical sizes of FPZ for different steel bar areas are plotted in Figure 2 when 
b/a=0.2, ν= 0.2 and n=0.5 under both criteria.  It shows that the critical size of FPZ 
decreases when the reinforcement area increases. 

 The critical sizes of FPZ for different steel bar positions are plotted in Figure 3 
when A=0.0004m2, ν= 0.2 and n=0.5 under both criteria.  It shows that the critical size 
of FPZ decreases with the distance between the reinforcement and crack tip increases. 

 The critical sizes of FPZ for different Poisson ratios are plotted in Figure 4 when 
A=0.0004m2, b/a=0.2 and n=0.5 under the maximum tensile strain criterion.  It shows 
that the critical size of FPZ decreases with Poisson ratio increasing. 

The critical sizes of FPZ for different concrete tensile strain softening indexes are 
plotted in Figure 5 when A=0.0004m2, b/a=0.2 and ν=0.2 under both criteria.  It shows 
that the critical size of FPZ increases with the tensile strain softening index increases. 

 
4 CONCLUSIONS 

It is reasonable to assess the critical sizes of FPZ ahead of the reinforced concrete crack 
tip under the maximum tensile-stress criterion and the maximum tensile-strain criterion; 
(2) The critical sizes of FPZ ahead of reinforced concrete crack tip decrease with the 
increasing reinforcement area under both failure criteria; (3) The critical sizes of FPZ 
decrease with the increasing distance between the reinforcement and the crack tip under 
the both failure criterion; (4) The critical sizes of FPZ ahead of reinforced concrete 
crack tip increase with the decreasing Poisson ratio under the maximum tensile strain 
criterion, and approach that of the maximum stress criterion when ν= 0; (5) The critical 
sizes of FPZ ahead of reinforced concrete crack tip increase with an increasing concrete 
tensile-strain softening index. 
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Figure 2.  The fluence of A to rpc.                                      Figure 3.  The fluence of b/a to rpc. 

 

 
    

    Figure 4.  The fluence of v to rpc.                                              Figure 5.  The fluence of n to rpc. 
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