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Based on weight integration to obtain a closed solution of cohesive crack problem, a 
new method is proposed to determine the tensile-strain softening curve (TSC) for 
quasi-brittle materials.  The key technique is to determine the weight function by 
superposition of the solution with different fictitious crack lengths to satisfy a given 
crack opening displacement within cohesive crack surfaces.  As an example, a central 
crack problem under uniform tension with given crack opening displacement in the 
fracture process zone (FPZ) was analyzed, the corresponding TSC was determined, and 
then the solution for stress and displacement field was obtained. 
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1 INTRODUCTION 

The cohesive crack model (CCM), also called the fictitious crack model (Hillerborg et 

al.  1976), is generally accepted as a means to explain the fracture characteristics of 

brittle or quasi-brittle materials.  According to the model, there is a fracture process 
zone (FPZ) at the crack tip, where the cohesive stress is interrelated with the crack-

opening displacement (COD), and will drop from ft as the crack opening increases.  A 

real crack will propagate if the cohesive stress drops to zero corresponding with the 
critical crack opening. The correlation curve of σ to w is named the tensile-strain 

softening curve (TSC), and the length of FPZ b is the distance from the real crack tip to 

the cohesive crack tip. 
Much effort has been spent on the TSC of concrete.  Although there is an ideal 

method to tension the specimen directly, it is difficult to do accurately (Petersson 1981).  

An inverse-analysis method based on the load-displacement or the load crack mouth 

opening displacement (CMOD) is used in practice (Zhao et al 2010, Su et al 2012) by 
three-point bending, wedge splitting, or other specimen tests.   

The theoretical solution to express the cohesive crack was proposed by Duan and 

Nakagawa (1988) in the weight-integration method, which refers to both the finite-
stress concentrating distribution and the smoothed-crack opening shape within the FPZ.  

Under this method, the solution is closely related with the weight function.  In this 

paper, a new technique is proposed to obtain the weight function by superposition of the 
solution with different cohesive crack length, in order to satisfy the given COD within 

FPZ, and to obtain the TSC. 
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2 STRESS FUNCTION BASED ON THE “DUAN AND NAKAGAWA 

MODEL”  

Considering an elastic-plane problem, the complex-stress function is expressed as  

0),(22  aZF  

),(),(),( 21 aZFaZFZaZF                                        (1) 

Z x iy  ，Z x iy                                                    (2) 

in which, F(Z,a) is the stress function gotten with stress singularity by linear elastic 

fracture mechanics, a is the notched length. Then the components of stress and 

displacement can be stated in the following form: 

1 1 22x F ZF F                                                   (3) 

1 1 22y F ZF F                                                  (4) 

y 1 2( )x i ZF F                                                     (5) 

1 1 22 ( ) ( )G i F ZF F      v                                     (6) 

in which, G is shear modulus.  For the plane stress state, 3 4     , and for the 

plane strain state, 3 4   ,  is the Poisson's ratio. 

To obtain the aimed analytical solutions, it is necessary to eliminate the stress 
singularity at the crack tip.  A weighted stress function is constructed as: 

     , , ,
a b

a
Q Z a b t F Z t dt



                                        (7) 

in which, ( )t  is the assumed weight function defined in the interval (a, a+b), b is the 

cohesion crack length.  The stress function ( , , )Q Z a b  is still bi-harmonic, which has a 

finite stress concentration at the crack tip, but varies with ( )t .  With this, we can 

determine weight function ( )t  based on the given COD as per the following section. 

 

3 DETERMINING THE WEIGHT FUNCTION BASED ON THE GIVEN COD 

To determine the weight function based on the given COD, the main procedures are 

shown as follows: 

(1) Assume the weight function form as bt /1)(  initially. 

(2) Divide the length of b  into n  parts as Figure 1. 

(3) First, point 0 is considered as the crack tip, and )(t  is substituted by b/1  in  
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the Equation (7), where the displacement field will be worked out.  The 

displacement of all the points in the x -axis is represented as: 

0 0 1 0 2 0 0 1 0, , , , ,
{ , , , , }

i n n
V


 Lv v v v v                                 (8) 

in which, 
0,i
v  is the displacement of point i when point 0 is considered as the crack tip.  

Now, considering that the measured COD/2 of point 1 is equal to 
0 1，v , then the load 

0 will be worked out. 
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Figure 1.  Sketch of calculating the weight solution. 

 

(4) Assuming that point 1 is the crack tip, the weight function )(t  is substituted  

      by the 

 1

n

b n 
in the Eq.  (7).  The displacement field will be worked out   

      secondly.  The displacement of all the points in the x-axis is represented as: 

 
1 1 2 1 1 1 1, , , ,

{ , , , }
i n n

V


 Lv v v v                                               (9) 

in which,
1,i
v  is the displacement of point i when point 1 is considered as the crack tip.  

To give the given 2/COD  to the sum of 2,1v  and 2,0v , then the load 1  will be 

worked out. 

(5) Assuming that the crack tip changes from point 2 to point (n-2), the 

      corresponding load is worked out.  The load is respectively 
232 ,, n  .   

(6) Considering that point (n-1) is the crack tip, the weight function ρ (t) is  

      substituted by the n b  in the Equation (7).  The displacement in the x-axis is  

      represented as: 

1 1,
{ }

n n n
V

 
 v                                                        (10) 
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in which, 
1,n n

v  is the displacement of point n when point (n-1) is considered as  

the crack tip.  To give the measured COD/2 to the sum of 
1,n n

v ,
2,n n

v ,  

3,n n
v …, 

1,n
v  and 

0,n
v , then the load 

1n 
 will be worked out. 

(7) To superimpose the calculated loads that corresponds with the assumed  

      crack tip from point 0 to point (n-1), the total load is obtained as: 

0 1 1i n        L L                                          (11) 

The final weight function will be determined by the superposition of each weighting 
as per the above steps.  It will be normalized to its area as 1.0, with the calculated v 

satisfying the given COD. 

From the above procedure, the weight function and then the stress function will be 

yielded out.  Therefore, the stress and displacement fields for a crack problem can be 
demonstrated, which can reflect the material’s fracture features, such as the TSC. 

 

4 AN EXAMPLE 

A Griffith crack problem under mode I is taken as an example, as shown in the Figure 

2.  The basic data are that a=30mm, b=10mm, E=3.510
4
Gpa, ft =3.0Mpa, and the 

measured COD is shown in Table 1. 

Table 1.  The measured COD. 

x/mm 30.0 31.0 32.0 32.5 34.0 35.0 36.0 38.0 40.0 

COD/2/mm 0.1189 0.109 0.095 0.0884 0.0685 0.054 0.064 0.015 0 

The weight function is assumed as 1( ) /t b  , ( , )a t c c a b     and the stress 

function is obtained by the weight integral method as: 

0
3

2

c a
x

b z z


   [arcsin( ) arcsin( )]                                (12) 

The stress 
0y y




 and displacement 
0y

v  along the x-axis is shown as: 

  
0

2 2 2 2
| | | [arctan( ) arctan( )], (| | )

y y

c a
x x c

b x c x a





  

 
    (13) 

   
2 2 2 2 2 2

0
 | { ln ln[ ]}, (| | )

y
x x c c x x c c x x c

bE



      v          (14) 

Based on the given COD, taking the cohesive crack lengths as 10.0mm, 8.0mm, 
6.0mm, 5.0mm, 4.0mm, 2.5mm, 2.0mm, and 1.0mm respectively, the corresponding 

load is obtained and superimposed.  Then the numerical weight function is worked out.  

After fitting and normalizing, the weight function is linearly expressed as: 

0 0137 0 3795( ) . . ( )t t a t a b                                   (15) 
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The numerical and fitting of weight function are shown in Figure 3: 
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Figure 2.  Griffith crack problem.                                Figure 3.  Weight function.   
 

Based on Equations (7) and (15), the obtained cohesive stress distribution and COD 

distribution along the crack ligament are shown in Figure 4.  The corresponding TSC is 
demonstrated in Figure 5. 
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Figure 4.  Cohesive stress and COD in FPZ.                   Figure 5.  Obtained TSC. 

 

5 CONCLUSIONS 

A new method is proposed to determine the stress faction and the TSC for quasi-brittle 
materials based on the Duan and Nakagawa Model, which can satisfy the given COD 

within cohesive crack surfaces.  It can be conveniently used to simulate the concrete 

fracture process if the COD within the FPZ is measured by the specimen fracture test. 
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