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Because a three-pinned circular arch is statically determinate, when it is subjected to a 
uniform radial load q, linear in-plane analysis has shown that the uniform load will 
produce quite simple internal actions:  a uniform axial compressive force N = qR and 
zero-bending moment, where R is the radius of the arch.  This is consistent with 
equations in textbooks for structural mechanics.  However, the non-linear behavior and 
buckling of three-pinned arches are very different from their linear counterparts.  The 
uniform radial load can produce significant bending moments in the three-pinned 
arches, and the value of the uniform axial compressive force in the three-pinned arches 
is greater than qR.  In addition, it is also shown in this paper that the solutions for the 
in-plane elastic buckling load of three-pinned arches available in the open literature 
cannot predict their in-plane buckling loads correctly. 
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1 INTRODUCTION 

Because three-pinned arches are statically determinate, it is commonly considered that 

linear analysis is sufficiently accurate for predicting their in-plane elastic behavior and 

buckling.  However, it has been shown (Bradford et al. 2002, Pi et al. 2002) that linear 
analysis is not adequate for predicting the in-plane structural response of two-pinned 

shallow arches.  Hence, linear analysis may also not be adequate for predicting the in-

plane structural response of three-pinned shallow arches.  In addition, because of the 
free rotation of a pinned crown, deformations of three-pinned arches are much larger 

than those of the two-pinned arches, and the structural response becomes non-linear 

earlier than that of two-pinned arches.  Hence, a three-pinned arch, whether it is shallow 
or deep, may be quite susceptible to non-linear behavior and to subsequent buckling.   

This paper presents a non-linear analysis for the in-plane elastic structural behavior 

and buckling of three-pinned circular arches under a uniform radial load q (Figure 1).  It 

compares the “conventional” linear analysis with non-linear analysis to demonstrate 
that non-linear analysis is required for correct predictions of in-plane structural 

behavior and buckling of three-pinned arches. 
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Figure 1.  Three-pinned circular arch. 

2  LINEAR ANALYSIS 

When a three-pinned steel circular arch is subjected to a uniform radial load, the 
differential equations of equilibrium for linear analysis can be written as (Pi et al. 

2013): 

0)~~()~~( 32  qRvwAERw+vEI iv , and 0)~~()~~( 2  vwAERw+vEI           (1) 

in the radial and axial directions, where Rvv /~   and Rww /~  , v and w are the radial 

and axial displacements, and d/)(d)(  , θ is the angular coordinate (Figure 1).  The 

static boundary conditions can be obtained as: 

0~~  wv  and 0~~  wv  at 0                       (2) 

The kinematic essential boundary conditions are: 

.and0at0and,at0   wv                   (3) 

Solving two equations of Eq. (1) and considering the boundary conditions given by 
Eqs. (2) and (3) leads to the solutions for the radial and axial displacements as: 
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where H(θ) is a step function such that H(θ) = 1 when θ > 0, and H(θ) = −1 when θ < 0. 
The axial compressive force and bending moment of the three-pinned arch can be 

obtained by substituting Eqs. (4) and (5) as: 
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The linear in-plane elastic buckling load of three-pinned circular arches was 

obtained by Timoshenko and Gere (1961), and Schmidt (1979) as: 
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                             (7) 
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The values of the factor k1 are given in Table 1: 

Table 1.  Values of factor k1. 

Θ (degree) 30 60 90 120 150 180 

k1 108 27.6 12.0 6.75 4.32 3.00 

3 NON-LINEAR EQUILIBRIUM  

Because the effect of the crown-pin has to be considered, the half arch shown in 

Figure 1 is used to derive the differential equations of equilibrium for non-linear 

analysis, by using the principle of virtual work, which states that: 

0d]~}~~~~([ 2
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where N and M are the axial compressive force and bending moment; they can be 

expressed as: 
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Integrating Eq. (8) by parts leads to the differential equations of equilibrium as: 
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This also leads to the static boundary conditions: 

0~ v   and  0~~ 2  vv    at θ = 0                      (11) 

and: 
0~ v   at  θ = Θ                           (12) 

In addition, the essential kinematical boundary conditions are: 

0~ w   at  θ = 0  and  θ = Θ, and 0~ v   at  θ = Θ                  (13)The dimensionless radial displacement can be obtained by solving the second equation of Eq. (10) under the boundary conditions given by Eqs. (11)-(13) as 
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The non-linear bending moment M can then be obtained by substituting Eq. (14) as: 
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Substituting the solution given by Eq. (14) into the first of Eq. (9), and integrating 
both sides of the equation over the arch length, leads to an equilibrium equation 

between the dimensionless load P and the dimensionless axial compressive force 

parameter β as: 
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where the coefficients A1, A2, and A3 are given by: 
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4 COMPARISONS OF LINEAR AND NON-LINEAR ANALYSES 

Distributions of non-linear radial displacements along the arch length given by Eq. (14) 

are compared with their linear counterparts given by Eq. (4) in Figure 2.  It can be seen 
that the radial displacements predicted by linear analysis are smaller than their non-

linear counterparts, particularly, for the shallow three-pinned arch with 2Θ=34.4
o
.  

Hence, use of linear analysis cannot correctly predict the serviceability limit state for 
three-pinned circular arches. 

 

Figure 2.  Comparison of distributions of radial displacements. 

Linear analysis predicts zero bending moments in three-pinned arches as shown in 

Eq. (6).  However, non-linear analysis predicts bending moments.  Typical distributions 

of bending moments along the arch length given by Eq. (16) are shown in Fig. 3.  It can 
be seen that the uniform radial load produces negative bending moments in three-

pinned arches, which are different to the positive bending moments in two-pinned 

arches produced by the uniform radial load (Pi et al. 2002). 

Typical non-linear and linear equilibrium paths are shown in Figure 4.  It can be 
seen from Figure 4 that the linear displacements are much smaller than their non-linear 

counterparts.  It can also be seen from the non-linear results that when the upper limit 
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point is reached, the arch will buckle and snap-through to a stable equilibrium position 

at the remote equilibrium branch.   

 

Figure 3.  Distributions of non-linear bending moments. 

 

Figure 4.  Linear and non-linear equilibrium paths. 
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5    NON-LINEAR BUCKLING 

The non-linear buckling load is the local maximum, so differentiating the non-linear 

equilibrium equation given by Eq. (16) with respect to  leads to the equilibrium 

equation between P and  at the limit point as being: 
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where the coefficients B1, B2, and B3 are given by: 
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Solving equations (16) and (19) simultaneously leads to the non-linear limit point 
buckling load as shown in Figure 4.  It can be seen from Figure 4 that the non-linear 

buckling load is much lower than its linear counterpart. 

 

6    CONCLUSIONS 

This paper has shown that the use of linear analysis underestimates the structural 

response of three-pinned circular steel arches under a radial uniform load, and cannot 

predict their serviceability limit state correctly.  In addition, the linear analytical 
solutions for the in-plane buckling load of three-pinned circular arches available in the 

open literature overestimate their buckling loads, and provide unsafe predictions for 

their in-plane buckling.  To predict correct structural in-plane responses and buckling of 
three-pinned circular steel arches, recourse to non-linear analysis is required.   
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