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In this paper, the numerical limit analysis procedure, associating the cell-based 
smoothed finite element method (CS-FEM) with the (second-order cone) primal-dual 
interior point algorithm, for cohesive-frictional materials problem is described.  The 
soil is modeled as a cohesionless frictional Mohr-Coulomb material with the associated 
flow rule.  Kinematically admissible velocity fields are established using CS-FEM.  
The underlying non-smooth optimization problem is formulated as a problem of 
minimizing a sum of Euclidean norms, ensuring that the resulting optimization problem 
can be solved by an efficient second order cone programming algorithm.  The core 
purpose of this study is to evaluate collapse loads as well as failure mechanisms of 
footings on slope which will be obtained directly from solving the optimization 
problems.  In this study, the properties of soil and the width of footing and distance 
from footing to the edge of the slope are considered.  Several numerical examples of 
slope stability are given to show the performance of the proposed method. 

Keywords:  Limit analysis, Cohesive-frictional, CS-FEM, SOCP, Optimization, Upper 
bound.

 

  

1 INTRODUCTION 

In limit analysis, upper bound and lower bound solution will give the bracket consisting of 

exactly collapse load.  However, the statically admissible stress field is difficult to establish 

rigorously comparison with the kinematically admissible velocity field.  Thus, the upper bound 

solution normally employed to estimate critical state of structures, especially in geomechanics. 

In upper bound limit analysis problems, kinematically admissible velocity fields need be 

approximated by using a computational method.  Once the displacement fields are approximated 

and the upper bound theorem of plasticity theory applied, limit analysis becomes a problem of 

optimization involving and can be solved using linear or non-linear programming techniques.  

This paper proposes a new numerical procedure for kinematic limit analysis problems-the cell-

based smoothed element method (CS-FEM) with second-order cone programming-to find out 

acceptable solutions for some problems in geomechanics such as bearing capacity and slope 

stability problems (Canh 2009, Canh 2010, Liu 2008, Hung 2009). 

 

2 UPPER BOUND LIMIT ANALYSIS FORMULATION 

Consider a rigid-perfectly plastic body of area 
2R  with boundary Γ, which is subjected to 

body forces ƒ and to surfaces tractions g on the free portion Γt of Γ.  The constrained boundary Γu 
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is fixed and 
u t    , 

u t   .  Let  
T

u vu  be plastic velocity or flow fields that 

belong to a space U of kinematically admissible velocity fields.  Where u  and v  are the velocity 

components in the x and y directions respectively.  The strain rates can be expressed by relations: 
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The external work rate associated with a virtual plastic flow u  is expressed in the form as: 

 ( ) = T T

ext
t

W d d
 

  u f u g u   (2) 

The internal plastic dissipation of the two-dimensional domain Ω can be written as: 

( ) ( )intW D d


 ε ε , where the plastic dissipation ( )D ε  is defined by 
σ( ) 0

( )D max . .
 

  εε σ ε σ ε , with 

  represents the admissible stresses contained within the convex yield surface ψ() represents 

the stresses on the yield surface associated to any strain rates ε through the plasticity condition.  

The kinematic theorem of plasticity states that the structure will collapse if and only if there 

exists a kinematically admissible displacement field Uu , such that: 

 0( ) < ( ) ( )int ext extW W W ε u u   (3) 

where    is the collapse load multiplier, 
0 ( )extW u  is the work of any additional loads f0

, g0
 not 

subjected to the multiplier. 

If defining ={ | ( ) =1}extC U Wu u , the collapse load multiplier    can be determined by the 

following mathematical programming: 

 
0( ) ( )ext

C
min D d W


 u

ε u   (4)  

 

3 CELL-BASED SMOOTHED FINITE ELEMENT METHOD (CS-FEM)  

In CS-FEM, the problem domain is discretized into elements as in FEM, such as 
1 2 ..... nel     and ,i j i j     the displacement fields are approximated for 

each element as: 

 
1
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where n is the number of node per element and  
T

I I Id u v  is the nodal displacement vector. 

Elements are then subdivided into several smoothing cells, such as shown in Figure 1, and 

smoothing operations are performed for each smoothing cell (SC). 

A strain smoothing formulation is given by Liu (2006). 
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where h  is the smoothed value of strains h  for smoothing cell 
e

C , and   is a distribution 

function or a smoothing function that has to satisfy the following properties (Liu 2006): 

0  1
ec

and d 



   .  For simplicity, the smoothing function   is assumed to be a piecewise 

constant: 
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  (7) 

with AC is the area of the smoothing cell 
e

C . 

 

 
 

Figure 1.  Smoothing cells for various element types: triangular, quadrilateral and polygonal. 

 

 
 

Figure 2.  Geometry de finition of a smoothing cell. 

 

Substituting Eq. (6) into Eq. (4), and applying the divergence theorem: 
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where Γc is the boundary of Ω
e
c and n is a matrix with components of the outward surface normal. 

The smooth version of the strain rates can be expressed as: 

 ( ) h

C
x Bd   (9) 

where 1 1[u ,v ,...u ,v ]T
n nd   (10) 

 

1, ,

1, ,

1, 1, ,

( )               0       ...       ( )                0

      0              ( )  ...            0                ( )

( )        ( )           ( )          

x C n x C

y C n y C

y C x C n y C

N x N x

N x N x

N x N x N x

B

,  ( )n x CN x

 
 
 
 
  

  (11) 

with 
,

1

1 1
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e
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k k k
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where ÑI,α is the smoothed version of shape function derivative NI,α; ns is the number of edges of a 

smoothing cell Ωc as shown in Figure 2; 
k

Gx  is the Gauss point of 
k

C  boundary segment which 

has length lx and outward surface normal n
k
. 

 

4 CS-FEM FORMULATION FOR PLANE STRAIN WITH MOHR-COULOMB YIELD 

CRITERION  

In this study, the Mohr-Coulomb failure criterion is used: 

 2 24 2xx yy xy xx yy( ) ( ) ( )sin ccos                (13) 

The plastic strains are assumed to obey the normality rule 


 






, where the plastic 

multiplier   is non-negative. 

Hence, the power of dissipation can be formulated as a function of strain rates for each 

domain i as 
i iD( ) cAt cos  .  

The upper bound limit analysis for plane strain using the smoothed strains can be formed as: 
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  (15) 

where nSD is the smoothing cell and nel is the number of element in the whole investigated 

domain.  And the fourth constraint in problem (15), resulting optimization problem is cast in the 

form of a second – order cone programming (SOCP) problem so that a large-scale problem can be 

solved efficiently (Canh 2009, Canh 2010, Mosek programming). 

 

5 UNDRAINED STABILITY OF FOOTINGS ON SLOPE USING 

In this section, a strip footing with a width of B is rested on slope, L is the distance from footing 

to the edge of the slope, as shown in Figure 3.  The ultimate bearing capacity depends on L, the 

soil unit weight which has the effect on the overall stability of the slope.  This is not similar to the 

surface foundation resting on level ground where soil unit weight has no influence on the ultimate 

bearing capacity.  The ultimate bearing capacity of the considered problem can be stated as: 

 , , , ,ucp L H q
f

B B B B B


  

 
  

 
  (16) 

with p is the average limit pressure acting on the footing and q is the distributed load. 

In this paper, the ratio H/B = 3 which ensures that the destruction occurs above the toe of the 

footing is used.  In order to analyse the influence of the footing distance to rest, an angle slope 

β=90
0
 is considered and cu/B=5, q/B=0 is established in the limit analysis problem, the footing 

distance to rest L/B=0÷4 is considered so as to compare with result of Shiau (2011) using finite 

element limit analysis formulations of the upper bound theorem. 
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Figure 3.  Footing strip resting on slope. 

 

Analysis model using 16000 elements and the result obtained is reported in Table 1. 

 

Table 1.  Ultimate bearing capacity (p/B) for (cu/B = 5 and q/B = 0). 

 

  
Footing distance to rest L/B 

0 1 2 3 4 

CS-FEM 9.5639 15.85 19.21 22.36 24.98 

Shiau 9.5 16.12 19.64 22.73 25.35 

 

 
 

Figure 4.  Ultimate bearing capacity (p/B) with cu/B = 5 and q/B = 0. 

 

As shown at Figure 4, the present result is lower (better) than result of Shiau (2011). 

 

 
 

Figure 5.  Plastic dissipation distribution with various L/B for: β = 90
o
, cu/B = 5, q/B = 0. 
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5.1    Effect of cu/B 

In the case L/B = 0 with 31600 elements, various ratio of cu/B from 0.566 to 25 was chosen, a 

normalized bearing capacity obtained will be shown in Table 2.  Although the result of CS-FEM 

is slightly higher than those of Kusakabe (1981) that using numerical method based on the upper 

bound theorem of perfect plastic solids, it’s better than the result of Shiau (2011) as well as Narita 

and Yamaguchi’s (1990) result based on the limit equilibrium method. 

 

Table 2. Bearing capacity with different cu/B. 

 

cu/gB 

L/B =0 

Narita and Yamaguchi 

(limit equlibrium) 

Kusakabe 

(upper bound) 

Shiau 

(lower bound) 

Shiau 

(upper bound) 
CS-FEM 

25 107 102 97.5 104.33 103.6923 

5 21.1 20.2 19.61 20.69 20.5269 

1 3.94 3.84 3.73 3.93 3.8578 

0.75 - - 2.59 2.85 2.7687 

0.714 - - 2.36 2.68 2.5403 

0.6 - - No feasible solution  1.87 1.6116 

0.556 - - No feasible solution  1.34 1.1137 

 

6 CONCLUSION 

A novel procedure for performing upper bound limit analysis using CS-FEM and SOCP has been 

described.  A key advantage of applying the CS-FEM to limit analysis problems is that the size of 

optimization problem is reduced.  Moreover, numerical examples show that when the underlying 

optimization is cast in the form of a standard SOCP large-scale engineering problems can be 

solved with a minimal computational cost, and gives acceptable upper bounds for both drained 

and undrained analysis. 
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