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This article presents a method to optimize concrete mix proportions with respect to 
different goals of economy and reliability or, equivalently, probability of failure.  This 
method is based on a quadratic generalized ridge regression model to predict 
compressive strength of concrete for 28 days curing period and a linear regression 
model to predict cost of concrete.  NSGA II is used to obtain reliable Pareto-optimal 
fronts with non-dominated solutions for different compressive strength requirements.  
Pareto-optimal fronts evolved by varying compressive strength requirements and 
probability of failure are analyzed.  It is found that there is a nominal rise in cost as 
probability of failure decreases up to a certain limit for a given compressive strength 
requirement.  However, there is a sharp rise in cost of concrete below that limit.  

Keywords:  Compressive strength, Regression model, Probability of failure. 

 

 

1    INTRODUCTION 

Reliability based design techniques are getting more acceptance for practical optimization in civil 

engineering, due to uncertainties involved in design processes (Dimou and Koumousis 2009, 

Behnam and Eamon 2013, Torii et al. 2012, Tao and Tam 2013, Barone and Frangpol 2014).  

These uncertainties owe themselves to inherent randomness, limited information, imperfect 

knowledge, human errors, structural idealizations in formulating the mathematical model of the 

structure to predict its response or behavior and the limitations of numerical techniques.  In 

Reliability Based Design Optimization (RBDO) technique, some constraints are replaced by 

probabilistic constraints allowing these constraints to be violated within the given limits of 

failure. RBDO sacrifices true optimum in order to find a reliable optimum corresponding to given 

probabilities of failure.  However, studying the impact of probability of failure on optimal 

solutions can be of great practical importance as it gives some idea regarding how the design 

variables change so as to make corresponding solution more and more reliable.  This can be 

realized by making optimization problem multi-objective by considering minimization of 

probability of failure of one or more constraints as additional objectives and obtaining a set of 

non-dominated solutions, i.e., a Pareto-optimal front. 

In this study, focus is on optimizing concrete mix designs as concrete plays a major role in the 
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performance of a structure.  Much work has been reported in literature to find optimal mixture 

composition of concrete satisfying specific performance.  Yeh (1999, 2003, 2007, 2009) 

developed computer-aided design system to find optimum concrete mix compositions based on 

artificial neural networks and non linear optimization techniques.  Karihaloo and Kornbak (2001) 

employed nonlinear mathematical programming technique in design of fibre reinforced concrete 

mixes which have both high ductility and high tensile strength.  Lim et al. (2004) proposed a 

method to design high performance concrete mix based on genetic algorithms.  Lee et al. (2009) 

proposed a design methodology based on artificial neural network, convex hull and genetic 

algorithms for optimal mixture proportioning of concrete composition.  Jayaram et al. (2009) 

developed elitist genetic algorithm models for the optimization of high volume fly ash concrete.  

The aim of this study is to find reliable concrete mix compositions, for normal strength 

concretes, meeting a specific compressive strength requirement and to study the impact of 

reliability level on optimal solution in multi-objective environment.  However, a multi-objective 

problem demands to find as many Pareto-optimal solutions as possible.  Over last two decades, a 

number of multi-objective Evolution Approaches [EA] have been suggested which are capable of 

finding multiple Pareto-optimal solutions in one single simulation run (Deb 2010).  Elitist Non-

Dominated Sorting Algorithm (NSGA-II) proposed by Deb et al. (2002) is one of such 

approaches that has low computational requirements, elitist approach, parameter less niching 

approach and simple constraint handling strategy.  This technique is used to obtain reliable 

Pareto-optimal front in this article. 

 

2    EXPERIMENTAL DATASET 

The Compressive strength data explored in this study was generated by Kumar (2002) by 

conducting experiments under controlled laboratory conditions.  The concrete mixes were 

proportioned using four basic ingredients, namely, water, cement, coarse aggregate and fine 

aggregate.  A set of 49 normal strength concrete mixes were prepared by varying water-cement 

ratio, cement contents and aggregates fractions.  Water-cement content ratio was kept between 

0.42 and 0.55.  For each mix, 15 cubes of 150 mm size were cast and were tested at 28 days of 

curing period.  Thus, a sufficiently large data bank was generated and the same has been used in 

the present work for analyzing compressive strength of concrete.  Also, unit cost of each material 

is determined by taking into account the price rates in India.  Based on the prices, cost of 1 m
3 

of 

concrete is calculated for each mixture and is measured in Indian rupees. 

 

3    MATHEMATICAL MODELS FOR CONCRETE MIX PARAMETERS  

There are four design variables, namely, water content ( ), fine aggregate content (  ), coarse 

aggregate content (  ) and cement content ( ).  All the design variables are measured in kg/m
3
. 

There are two response variables, namely, cost of concrete (    ) and 28 days compressive 

strength (    ).  Compressive strength of concrete is measured in MPa and cost of concrete is 

measured in Indian rupees.  

In this study, no cost is associated with the water content and as such, cost of concrete is a 

linear function of fine aggregate content, coarse aggregate content and cement content.  Linear 

regression model developed for cost of concrete is shown in Eq. (1). 

                                                                                        

However, compressive strength of concrete may not be linearly related to the constituent 

materials of concrete.  In the present study, compressive strength of concrete has been modeled as 

a quadratic function of   ⁄  ratio,    ⁄  ratio,    ⁄  ratio and cement content  .  These predictor 
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variables have been selected on the basis of correlation analysis.  Table 1 shows correlation 

matrix of  ,   ,   ,  ,    ⁄  ratio,     ⁄  ratio,    ⁄   ratio and     .  

 
Table 1.  Correlation matrix. 

 

Parameter 
  

(kg/m
3
) 

   

(kg/m
3
) 

   

(kg/m
3
) 

  

(kg/m
3
) 

              
     

(MPa) 

  (kg/m
3
) 1.000 0.805 -0.305 0.541 0.171 0.261 -0.492 0.000 

   (kg/m
3
)  1.000 0.102 0.026 0.617 0.751 0.046 -0.462 

   (kg/m
3
)   1.000 -0.375 0.194 0.320 0.870 -0.214 

  (kg/m
3
)    1.000 -0.734 -0.637 -0.776 0.821 

        1.000 0.960 0.517 -0.968 

          1.000 0.546 -0.900 

           1.000 -0.581 

 

All the four selected predictor variables have strong correlation with s    in comparison to 

remaining variables.  Further, it can also be observed from the table that data used for modeling 

suffers from multi-collinearity as correlation between each pair of predictor variables is 

numerically greater than 0.5.  To tackle this problem, Generalized Ridge Regression (GRR) 

technique proposed by Hoerl and Kennard (1970) has been employed for model development.  

The quadratic GRR model developed for compressive strength of concrete is given in Eq. (2): 

                         ⁄             ⁄            ⁄                     ⁄   

            ⁄               ⁄                        ⁄     ⁄  
            ⁄     ⁄               ⁄     ⁄                                                             

 

4    MULTI-OBJECTIVE PROBLEM FORMULATION 

Multi-objective concrete mix optimization problem is formulated in Eq. (3): 

                                  

                                                   
             

        

                                                           
             

              
         

                                  
    

                                                                    

                                                             ⁄       
                                                               

                                                                   

                                                                   

                                                                  }
 
 
 
 
 

 
 
 
 
 

                                                      

where                   are, respectively, the mean values of water content, fine 

aggregate content, coarse aggregate content and cement content;          denotes probability 

of failure of compressive strength constraint.    denotes the target 28 days compressive strength 

of concrete;    is the upper bound on probability of failure of compressive strength constraint.  

Water-cement content ratio   ⁄  is kept between 0.42 and 0.55.   ,    ,    ,   , respectively, are 
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lower bounds for water, fine aggregate, coarse aggregate and cement content.    ,    ,    ,   , 

respectively, are upper bounds for water, fine aggregate, coarse aggregate and cement content. 

In this article, all the four design variables are considered as random design variables.  There 

are no deterministic variables and random parameters.  It is assumed that all the four design 

variables follow normal distribution with their respective means and standard deviations listed in 

Table 2.  The lower and upper bounds for the design variables are also taken from Table 2.  The 

constraint on   ⁄  is taken as deterministic constraint. 

 
Table 2.  Descriptive statistics. 

 

Variable 
Minimum 

(kg/m
3
) 

Maximum 

(kg/m
3
) 

Mean 

(kg/m
3
) 

Standard 

deviation 

(kg/m
3
) 

  180.00 230.00 202.44 12.69 

   416.93 642.18 535.64 57.29 

   798.48 1252.05 1064.85 133.42 

  350.00 475.00 424.49 37.32 

     31.66 54.49 45.80 5.42 

 

Since the two objectives given in (3) are of conflicting nature, therefore, the problem is to 

find a set of non-dominated solutions forming Pareto-optimal front depicting the tradeoff between 

the objectives efficiently.  Here, NSGA II has been used to locate Pareto-optimal fronts. 

 

5    RESULTS AND DISCUSSION 

The optimization is run for target compressive strength of 25 MPa, 30 MPa, 35 MPa and 40 MPa, 

which are normal strength concretes used for general applications.  The results are obtained for    

as 0.05.  Probability of failure is calculated using mean value approximation method.  

VisualDoc7.2 developed by Vanderplaats Research & Development, Inc. has been used to carry 

out reliability analyses and optimizations.  

 

5.1    Selection of NSGA II Parameters  

The maximum number of generations is varied up to 100 in steps of 25.  The Pareto-optimal 

fronts obtained for different values of number of generations for    = 25 MPa,    = 0.05 are 

demonstrated in Figure 1.  It is seen that difference between the graphs is not much beyond 

generation size of 75.  

Similar observations are made in remaining cases also. Therefore, the maximum generation 

size is logically set as 75.  Also, Population size is taken as 16, 18, 20, 22, 24 in each case under 

study.  The Pareto-optimal fronts obtained for different population sizes for    = 25 MPa,    = 

0.05 are shown in Figure 2.  It can be seen from the figure that best Pareto-optimal front is 

obtained for population size of 20.  Similar results are obtained in all the remaining cases. So, the 

optimal value of population size is taken as 20. 
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Figure 1.  Pareto-optimal fronts obtained for 28 days 

compressive strength of 25 MPa and    of 0.05 for 

different number of generations. 

 

 

Figure 2.  Pareto-optimal fronts obtained for 28 days 

compressive strength of 25 MPa and    of 0.05 for 

different population size. 

5.2    Optimization Results  

Figure 3 depicts the locations of Pareto-optimal fronts in all the four cases under study.  It can be 

noted from Figure 3 that Pareto-optimal front for    of 25 MPa does not cover entire range of 

allowed probability of failure.  This can be attributed to the fact that 25 MPa is a very small value 

of compressive strength and can be attained with a very high level of reliability for range of 

parameters under study. 

Pareto-optimal fronts depict that the two objectives of cost and probability of failure are not 

linearly related to each other.  It can be noted that Pareto-optimal fronts are divided into two 

parts.  For very low values of    (10
-5

or below for    = 25 MPa, 10
-4

or below for    = 30 MPa, 35 

MPa and 10
-3

 or below for    = 40 MPa), the rate of rise in optimal cost is more rapid.  But, as the 

probability of failure increases, this rate becomes slow.  This means lowering probability of 

failure below a certain level may not be cost effective and the designer should assess the required 

reliability level properly to get reliable economic design.  

 

 
 

Figure 3.  Pareto-optimal fronts for               . 
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6    CONCLUSIONS 

A multi-objective optimization problem, where cost of concrete and probability of failure of 

compressive strength constraint are simultaneously minimized, is formulated.  Pareto-optimal 

solutions are obtained using NSGA II. Pareto-optimal fronts evolved by varying compressive 

strength requirements are analyzed.  It is found that rise in cost with decreasing          is 

nominal up to a certain limit of    for a given compressive strength requirement.  Below that 

limit, there is a sharp rise in cost for a small fall in   .  It is also observed that cement content 

plays a major role in optimization of concrete mix parameters.  
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