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Probabilistic analysis of practical engineering problems has long been based on 

traditional sampling-based approaches, such as Monte Carlo Simulations (MCS) and 

gradient-based first-order and second-order methods.  Since the finite element (FE) or 

other numerical methods are required to evaluate engineering system responses, such 

as forces or displacements, it is not efficient to directly integrate FE and sampling-

based analysis approaches.  Over the years, various approximate methods have been 

developed and applied to the reliability analysis of engineering problems.  In this study, 

an efficient model reduction technique based on high-dimensional model reduction 

(HDMR) method has been developed using augmented radial basis functions (RBFs).  

The basic idea is to use augmented RBFs to construct HDMR component functions.  

The first-order HDMR model only requires sample points along each variable axis.  

The HDMR model, once created and used to explicitly express a performance function, 

is further combined with MCS to perform probabilistic calculations.  As test problems, 

a mathematical problem and a 10-bar truss example are studied using the proposed 

reliability analysis approach.  The proposed method works well, and accurate reliability 

analysis results are found with a small number of original performance function 

evaluations, i.e., FE simulations. 

Keywords:  Finite element (FE), Monte Carlo Simulations (MCS), Numerical methods, 

High-dimensional model reduction (HDMR) method.

 
 

1 INTRODUCTION 

The reliability analysis of an engineering problem is to calculate the probability of failure, !!, as 

shown in Eq. 1.  

!! ≡ !($(x) ≤ 0) = ∫ +"(x),x#(x)'(                              (1) 

where !(x) is a performance function, and x is a vector of random variables.  To calculate the 
integration in Eq. (1) for practical engineering problems, two types of methods can be used.  
There is plenty of literature in the first-order and second-order reliability methods 
(FORM/SORM) (Hasofer and Lind 1974, Hohenbichler et al. 1987, Low and Tang 2007, Li and 
Low 2010).  Other methods are available using sampling techniques (Rubinstein 1981, Au and 
Wang 2014).  The sampling methods, such as Monte Carlo simulations (MCS), can be applied in 
a very straightforward manner when combined with existing analysis packages.   

For practical applications of engineering reliability analysis, FE or other simulation methods 
are routinely used to evaluate responses of engineering systems or components.  Therefore, the 
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analysis software of FE code shall be coupled with a reliability analysis method so that the 
function values can be called repeatedly by MCS or FORM/SORM.  For problems requiring 
expensive FE analyses, this may be computationally prohibitive.  Therefore, approximate models 
or surrogate models have been developed and used in engineering reliability analysis and other 
applications.  Quadratic polynomial functions and other more complicated functions are routinely 
used to replace implicit functions in metamodels (Faravelli 1989, Wu 1995, Hassing et al. 2010, 
Bai et al. 2012, Zhao et al. 2014, Yin et al. 2016, Wang et al. 2016, Wang et al. 2020).  
Dimension reduction technique using high-dimensional model representation is also available in 
literature (Tunga and Demiralp 2005, Chowdhury et al. 2009, Chen et al. 2016).  Accurate and 
efficient approximation models shall be investigated and applied to complex engineering 
problems.   

This work investigates a reliability analysis approach integrating HDMR, augmented RBF, 
and MCS.  The explicit RBF-HDMR models are constructed based on augmented RBF 
component functions and used to replace implicit functions in a reliability analysis.  MCS can be 
applied efficiently to find the failure probability using the explicit RBF-HDMR models of the 
performance functions.  In Section 2, the proposed reliability analysis approach is first 
introduced, including HDMR, augmented RBF, and MCS.  Two numerical examples are 
introduced and solved in Section 3.  Section 4 presents other applications of the proposed 
approach, and a summary is given in Section 5.   
 
2 THE PROBABILISTIC ANALYSIS APPROACH  

The HDMR method is to express a function using component functions, as can be seen in Eq. (2). 

$(x) = $( + ∑ $)(/))*
)+, +∑ $)!)"0/)! , /)"2,')!-)"'* + ∑ $)!)")#0/)! , /)" , /)#2,')!-)"-)#'* +⋯+

$,.…*(/,, /., … , /*)                                  (2) 

where $( is a zeroth-order HDMR component function, which represents the function value 
at a reference point, i.e., x = c.  A first-order HDMR component function, $)(/)), is a function of 
only one variable, /), and can be either linear or nonlinear.  The zeroth and first-order functions 
are written as in Eq. (3) and Eq. (4). 

$( = $(c)                                                   (3) 

$)(/)) = $(/) , 6))−$(                                         (4) 

where (/) , 8)) = (9,, … , 9)0,, /) , 9)1,, … , 9*).  To include only the zeroth and first-order HDMR 
component functions and neglect any higher-order component functions in Eq. (2), we have the 
first-order HDMR model as in Eq. (5). 

$(x) = ∑ $(/) , 8))*
)+, − (: − 1)$(c)                                       (5) 

Based on the augmented RBF metamodeling method, a function !(x) can be expressed using 
an approximation function, as in Eq. (6) (Fang and Horstemeyer 2006). 

$<(x) = ∑ =)>(‖x − x)‖)2
)+, +∑ 93@3(x)

4
3+,                              (6) 

where ∑ '!((‖x− x!‖)"
!#$  is a basic RBF, and ∑ +%,%(x)&

%#$  represents the augmented 
polynomial functions.  Augmented RBFs in Eq. (6) are more accurate than basic RBFs for some 
functions, especially low order functions. 
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Substituting RBFs in Eq. (6) into the HDMR framework in Eq. (5), the first-order augmented 
RBF-HDMR metamodel can be created, as in Eq. (7). 

$<(x) = ∑ A∑ =)3> BC/) − /)3CD
2$
3+, +∑ E)5@5(/))

4$
5+, F*

)+, − (: − 1)$(c)                 (7) 

In Eq. (7), -! sample points are generated to construct the first-order RBF-HDMR 
metamodel.  MCS can be applied to the first-order RBF-HDMR metamodel, !.(x), to estimate the 
failure probability, /', as in Eq. (8). 

!! ≡ !($(x) ≤ 0) = ,
6∑ Γ[$<(x)) ≤ 0]6

)+, 								 	 	 	 	 				 	 	 	 	 	 								(8)	
 
3 NUMERICAL EXAMPLES  

In this section, one mathematical function and one truss example are presented in order to study 
the accuracy and numerical efficiency of the proposed reliability analysis method.   
 
3.1    A Mathematical Function  

This is a mathematical function studied in literature (Tan et al. 2011).  The explicit performance 
function is written as in Eq. (9). 

$(J) = (/, + 2)7 − (/. − 1).                              (9) 

The two independent random variables, 0$ and 0(, follow a standard normal distribution.  
The direct MCS is applied to the example using 106 realizations based on the original explicit 
function in Eq. (9), and the probability of failure is /' = 0.1980.  The RBF-HDMR metamodel is 
created using 13 sample points, with seven sample points along each variable axis.  The failure 
probability is estimated to be /' = 0.1985, representing an error of 0.25%, when compared with 
/' = 0.1980, i.e., the solution estimated using the direct MCS method and Eq. (9). 
 
3.2    A Ten-Bar Truss  

Figure 1 shows a well-studied two-dimensional linear-elastic truss structure (Penmetsa and 
Grandhi 2002, Chowdhury et al. 2009).  The truss has ten bars, as shown in Figure 1.  Two 
concentrated loads are simultaneously applied in the vertical direction at nodes 2 and 3 (/$ = 105 
lb).  The material’s elastic modulus is 107 psi, which is treated as a deterministic variable.  The 
cross-sectional areas of all bars, 1 = [0$ … 0$)]*, follow a normal distribution with a mean 
value of 2.5 in2 and standard deviation of 0.5 in2.  The ten cross-sectional areas are the only 
random variables in this example, and they are assumed to be independent.  Based on the applied 
external loads, the critical vertical displacement of truss is 5+(1) at node 3.  If a vertical 
displacement limit 5,-. = 18 in. is required for design, the implicit performance function can be 
written as in Eq. (10).  

$(J) = L89: − L7(J)                                   (10) 

To compute the nodal displacements and evaluate the performance function values, an 
existing FE software package, SAP2000 (CSI 2011), is adopted.  The use of commercial software 
in this example is to study the practical application aspects of the RBF-HDMR method.  An RBF-
HDMR metamodel is created using 41 sample points, with five sample points along each variable 
axis.  In addition, a conventional RBF approach is also applied, and 41 samples are generated 
using the Latin hypercube sampling approach.  For both the RBF-HDMR and RBF methods, 
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there are 41 performance function evaluations and FE analyses required according to the number 
of sample points.  Failure probability estimations and the corresponding numbers of original 
performance function evaluations using direct MCS, FORM, SORM, and RBF-HDMR and RBF 
methods are listed in Table 1.  It is found that the failure probability !!, calculated using direct 
MCS, is 0.1394, which is regarded as the true value.  Compared with the solutions obtained using 
MCS, RBF-HDMR underestimates !! by about 3.0% (!! = 0.1352), while the conventional RBF 
method overestimates the !! by about 16.7% (!! = 0.1627).  In addition, if a correlation 
coefficient of 0.1 is adopted among all random variables, the failure probability is estimated to be 
/' = 0.1674.  If the correlation coefficient increases to 0.2, the failure probability increases to 
0.1912.  The RBF-HDMR method is very efficient and is shown to be more accurate in this 
example.   

 

   
 

Figure 1.  A ten-bar truss structure. 

 
Table 1.  Reliability analysis results. 

 

    
 
4 OTHER APPLICATIONS 

The proposed reliability analysis approach is a general method and can be applied to different 
types of engineering problems.  In other engineering applications, including structural 
engineering, geotechnical engineering, and transportation infrastructure, problems have been 
successfully solved using the approach.  It is particularly useful and efficient for problems 
involving implicit performance functions and expensive numerical simulations, such as FE, 
computational fluid dynamics, and heat transfer analyses.   
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Method Failure probability % error Number of function evaluation
Direct MCS (Chowdhury et al. 2009) 0.1394 - 1,000,000
FORM (Chowdhury et al. 2009) 0.0894 35.9% 190
SORM (Chowdhury et al. 2009) 0.1571 12.7% 577
RBF 0.1627 16.7% 41
RBF-HDMR 0.1352 3.0% 41
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5 SUMMARY 

An engineering reliability analysis approach has been developed and tested using two example 
problems.  Accurate reliability analysis results have been obtained with small sample sizes.  The 
approach provides an efficient tool for analysis and design of complex engineering problems in 
which expensive response simulations are required.  Future research work is needed to further 
develop the method and apply it to broader engineering applications. 
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