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The universal size effect law for concrete is a law that describes the dependence of 
nominal strength of specimen or structure on both its size and the crack (or notch) 
length, over the entire of interest, and exhibits the correct small and large size 
asymptotic properties as required.  The main difficulty has been the transition of crack 
length from 0, in which case the size effect mode is Type 1, to deep cracks (or 
notches), in which case the size effect mode is Type 2 and fundamentally different 
from Type 1.  The current study is based on recently obtained comprehensive fracture 
test data from three-point bending beams tested under identical conditions.  This paper 
presents a studying to improve the existing universal size effect law using the 
experimentally obtained beam strengths for various different specimen sizes and all 
notch depths.  The updated universal size effect law is shown to fit the comprehensive 
data quite well.  

Keywords:  Concrete fracture, Scaling of strength, Fracture testing, Statistical testing, 
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1 INTRODUCTION 

The preceding conference article (Şener et al. 2014a) presented an introduction to the 

problem and reported comprehensive test data for fracture of concrete specimens.  The 

experimental program, also described in (Şener et al. 2014b), consisted of 80 three-

point bend beams with 4 different depths 40, 93, 215 and 500mm, corresponding to a 

size range of 1:12.5.  Five different relative notch lengths, a/D = 0, 0.02, 0.075, 0.15, 

0.30 were cut into the beams. A total of 20 different geometries (family of beams) were 

tested.  The present paper will use these data to analyze the effects of size, crack length.  

The Scientific and Technological Research Council of Turkey (TUBITAK) 

provided funding to carry out comprehensive fracture tests of beam specimens made 

from the almost the same age and same concrete mix to investigate the influence of size 

and notch length on specimen strength.  

 

2 REVIEW OF SIZE EFFECT AND CRACK LENGTH EFFECT  

The nominal strength of geometrically similar structures, defined with Eq. (1) is 


     

  

  
 (1) 
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independent of structure size D (P = maximum load; b = structure width; and cN = 

dimensionless constant chosen for convenience).  Size effect – defined as any 

dependence of N on D –  is a phenomenon typical in fracture or damage mechanics.  

According to linear elastic fracture mechanics (LEFM) theory, which applies to 

homogeneous perfectly brittle materials, and for geometrically similar structures with 

similar cracks, N  D
-1/2

, which is the strongest possible size effect.  For quasi-brittle 

materials such as concrete, two simple types of size effects can be seen in Eq. (2). 


   

  
 

       

 (2) 

Here B and the transitional structure size D0 are empirical parameters to be 

identified by data fitting and ft = tensile strength of concrete introduced for 

convenience.  Eq. (2) was derived (Bazant 1984) by simple energy release analysis and 

later by several different approaches such as by asymptotic matching based of the 

asymptotic power scaling laws for very large and very small D (Bazant and Planas 

1998).  In the standard size effect plot of log N versus log D, Eq. (2) gives a smooth 

transition from a horizontal asymptote to an inclined asymptote of slope -1/2 (Figure 1). 

 

 
 

Figure 1.  Dependence of N on structure size D of beams with (a) no notched and (b) deep 

notch. 

   

 In Eq. (2), 



     
    

  
   

    
    

 

  
 (3) 

where g0 = g(0); g0’ = g’(0); a/D = relative crack length; 0 = a0/D = initial value 

of ; g(k2
(dimensionless energy release rate function g(of LEFM; k() = 

bDKI/P where KI = stress intensity factor,  P = load; g’() = dg()/d’ = E = 

Young’s modulus for plane stress and ’ = E/(1-2
) for plane strain (where Poisson 

ratioGf = initial fracture energy =  area under the initial tangent of the cohesive 
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softening stress-separation curve; cf = characteristic length, which represents about a 

half of the FPZ length.   Eq. (2) may be rewritten as shown in Eq. (4). 



    
    

      
   

 (4) 

Because function g()  or k() embodies information on the effects of crack length 

and structure geometry, Eq. (4) is actually a size effect law for Type 2 failures.  

The Type 1 size effect, N approaches, for large D, a constant value (a horizontal 

asymptote in the size effect plot), since the Weibull statistical size effect (Weibull 

1939) is unimportant.  For three point bend beams, it is indeed unimportant.  Because 

the zone of high stresses is rather concentrated, even do not exist along a notch.  This 

prevents the critical crack from forming at widely different locations of different 

random local strength (for the same reason, the statistical size effect is negligible in 

Type 2 failures also).  

The large size asymptote for Type 1 size effect is, in the log-log plot, a downward 

inclined straight line of a slope –n/m, which is much milder than the slope of -1/2 for 

LEFM (Weibull 1939) (Figure 1); here m = Weibull modulus and n = number of spatial 

dimensions of fracture scaling (n = 2 for the present tests).  The small size asymptote is 

also a horizontal line and, for medium sizes, the size effect is a transition between these 

two asymptotes.  In absence of the statistical size effect, Eq. (5) was used by Hoover 

and Bazant (2014).  


     

    
   

    
 

   

 (5) 

Here fr

 Db, lp, and r are empirical constants to be determined from tests; 

fr

nominal strength for very large structures, assuming no statistical size effect (in 

the special case of very large beams, fr

represents the flexural strength, also called the 

modulus of rupture); and Db = depth of the boundary layer of cracking (roughly equal to 

the FPZ size).  In all previous works, D = same characteristic structure size as used for 

the Type 2 size effect [Eq.(4)].  Furthermore, lp = material characteristic length, which 

is related to the maximum aggregate size da.  If the structure is larger than 10lp, one can 

set lp  0, which corresponds to the original formulation of the Type I law.  

It was further shown that the Type 1 and 2 SELs satisfy the large-size and small 

size asymptotic properties of the cohesive crack model applied to Type 1 and 2 failures. 

Furthermore, it was experimentally confirmed that, within the range of inevitable 

experimental scatter, the SEL of Type 2 gives about the same values of fracture energy 

Gf when applied to notched fracture specimens [e.g., compact compression test (Barr et 

al. 1998)]. 

 

3 APPLICATION OF USEL BY FRACTURE TESTS 

To calibrate the deterministic USEL, the mean of the data was computed separately for 

each family of identical specimens from comprehensive fracture tests (Şener et al. 

2014a, 2014b, Çağlar and Şener 2015). The surface of the optimized Universal Size 
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Effect Law (USEL) is plotted in Figure  2.  In this Figure  2 size effect curves were 

given for only and  0.3.  Transition from these curves for calibrating USEL 

is just used with smooth curves.  The studies on these transition curves are still on 

going.  



 
 

Figure 2.  Entire Universal Size Effect law surface.  

 

In particular, the fracture parameters Gf and cf should not be influenced by the data 

for beams with no notches (Type I data) or shallow notches and fr

 Db, lp, and r  

should not be influenced by the data for deep notches.  Therefore, these parameters 

were determined first by separate fitting of specimens with deep notches ( or 

and specimens with shallow or no notches (=0).  Only the nonstatistical USEL 

in Eq.(6) was considered.  Nonlinear fitting of the Type I SEL [Eq.(5)] to the notchless 

( beams gave (Şener et al. 2014a, b) values in Eq.(6) with coefficient of variation 

of fit 9.4%. 

               Db = 90 mm, lp = 50 mm,  
 
 

 = 4 MPa, r = 1/2                        (6)        

These values are different from than the studies by Hoover and Bazant’s (2014) 

Db=73.2 mm, lp=126.6 mm,   
 

 =5.27 MPa.  The differences between some of the 

parameters were in the order of two for especially lp value. The size range 1:12.5 was 

large enough to identify all the fracture parameters in Eq.(5).  The USEL can be drawn 

for a fixed , which gives a size effect plot of log(N) versus log D (Figure 2).   

In Figure 3, this plot is created and compared with the data from Şener et al. 

(2014a, b).  Also in Figure 3, for and 0.15, Type II (at top) size effect was used, 

for unnotched specimen Type I (at bottom) size effect was used. For the 

and 0.075  USEL (at center) should proposed. 



4 CONCLUSIONS  

(1) The Type 2 size effect in specimens with deep notches or cracks does not give 

a correct transition to of Type 1 in specimens with no notch or crack.  
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(2) The size effect data from deeply notched specimens ( = 0.3 and 0.15), and 

parameters fr


, Db, lp, and r were determined separately by fitting only the size 

effect data for un-notched specimens ( = 0).  

(3) USEL fits the measured nominal strength quite well. 

(4) Both Type I and II sizes were effect observed in this study and confirmed the 

need to be account for size effect in design codes. 

 

 

 
 

Figure 3.  Effect of structure size on the nominal strength of the data from Şener et al. (2014a). 
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