
Interaction between Theory and Practice in Civil Engineering and Construction 

Edited by Komurlu, R., Gurgun, A. P., Singh, A., and Yazdani, S. 
Copyright © 2016 ISEC Press 

ISBN: 978-0-9960437-2-4 

223 

EFFECTS OF A CENTRAL HOLE ON 

COMPRESSIVE BEHAVIOR OF CIRCULAR FIBER-

REINFORCED RUBBER BEARINGS 

SEVAL PINARBASI and FUAD OKAY
 

Dept of Civil Engineering, Kocaeli University, Kocaeli, Turkey 
 

The aim of this study is to investigate the effects of the existence of a central hole on 
the main design parameters of a circularfiber-reinforced rubber bearing; namely 
compression modulus and shear strain due to compression. Since the compressive 
behavior of a multi-layered rubber bearing is mainly governed by the behavior of a 
single interior rubber layer in the bearing bonded to the reinforcing sheets at its top and 
bottom faces, the study is concentrated on uniformly compressed “bonded” rubber 
layers. The related compression problem is formulated using the “pressure” method. 
After deriving the closed-form expressions for compression modulus and shear strain, 
the effects of the hole on compressive behavior are investigated for fiber-reinforced 
bearings with different initial shape factors (a kind of aspect ratio for individual rubber 
layers) and rubber compressibility. It is shown that the compression modulus of a fiber-
reinforced bearing may decrease considerably as the size of the central hole or the 
flexibility of the reinforcement increases, especially if the shape factor of the bearing is 
high and the compressibility of the rubber is not negligible. The study also shows that 
the effect of the hole on maximum shear strain reaches its most striking value when the 
hole size is smaller than 10% of the outer radius of the bearing.  

Keywords: Compression modulus, Elastomer, Hollow circular bearing, Isolator, 
Pressure method, Seismic isolation.  

  

  

1 INTRODUCTION 

Multi-layered steel-reinforced rubber bearings have widely been used in various 

engineering applications, including isolation of machines from detrimental effects of 

vibrations, of bridges from adverse effects of thermal expansion and contraction, or of 

buildings from devastating effects of earthquakes. Rubber is, indeed, an ideal material 

for such isolation applications since it inherently has considerably low shear modulus, 

which ranges from 0.30 to 2.22 MPa (Kelly 1997). However, if a rubber bearing is 

subjected to high compression or bending loads, the excessive bulging occurred at the 

bulge-free surfaces of the bearing can lead to the failure of rubber under hydrostatic 

tension, which has to be prevented to fully utilize the favorable mechanical properties 

of rubber. The bulging of rubber, in turn, the hydrostatic tension in rubber, can be 

reduced if it is layered and reinforced using relatively rigid plates. In fact, the primary 

function of thin steel plates bonded to top and bottom faces of thin rubber layers in a 

multi-layered elastomeric bearing is to enhance the compressive and bending behavior 

of the bearing by controlling the bulging of interior rubber layers.   



Komurlu, R., Gurgun, A. P., Singh, A., and Yazdani, S. (Eds.) 

224 

In the last three decades, many structures with sensitive equipment, historical value 

or post-earthquake importance have been isolated using multi-layered steel-reinforced 

rubber bearings. On the other hand, the researchers have realized that the use of rubber 

bearings for isolation of regular (residential, office, etc.) buildings or of structures in 

developing countries is rather limited. This phenomenon is mostly attributed to the fact 

that the conventional steel-reinforced bearings are usually considerably large, heavy 

and expensive due to the existence of steel plates as reinforcing elements. Kelly (1999, 

2002) verified through analytical and experimental studies that both the cost and weight 

of the bearings can be reduced if fiber-reinforcement (in the form of two-directional 

sheets with large openings) is used instead of steel reinforcement.  In the last fifteen 

years, many studies have been conducted on fiber-reinforced bearings (e.g., Kelly and 

Takhirov 2001, Mordini and Strauss 2008, Pinarbasi and Mengi 2008, Toopchi-Nezhad 

et al. 2008, Osgooei et al. 2014). However, most of these studies have been 

concentrated on either long rectangular strips or solid circular bearings. On the other 

hand, the use of hollow-circular isolators is also very common in practice. For this 

reason, it is essential to investigate the effects of the existence of a central hole on 

behavior of a fiber-reinforced bearing under compression/bending. 

The main objective of this study is to investigate the effects of the existence of a 

central hole on the main design parameters of a circular fiber-reinforced rubber bearing; 

namely compression modulus and shear strain due to compression. Since the 

compressive behavior of a multi-layered rubber bearing is mainly governed by the 

behavior of a single interior rubber layer in the bearing bonded to the reinforcing sheets 

at its top and bottom faces, the study is concentrated on uniformly compressed 

“bonded” rubber layers. The related compression problem is handled using the well 

known “pressure” method. After deriving the closed-form expressions for compression 

modulus and shear strain, the effects of the hole on compressive behavior are 

investigated for fiber-reinforced bearings with different shape factors (a kind of aspect 

ratio for individual rubber layers) and rubber compressibility.  

 

2 UNIFORM COMPRESSION OF A RUBBER LAYER BONDED TO FIBER-

REINFORCED SHEETS AT ITS TOP AND BOTTOM FACES 

The uniform compression of a typical interior rubber layer in a multi-layered circular 

fiber-reinforced rubber bearing with a central hole is shown in Figure 1. The disc has an 

inner radius of a, outer radius of R, rubber thickness of t and equivalent reinforcement 

thickness of tf. Under a concentric compressive load of P, the top surface of the disc 

approaches to the bottom with a relative vertical displacement of . This compression 

problem is formulated using the pressure method modified to include the extensibility 

of the flexible reinforcing sheets (Kelly 1999). It is convenient to define a cylindrical 

coordinate system (r, , z) with its origin located at the center of the disc (Figure 

1).Since the deformed shape of the disc is axisymmetric, the displacement component 

in  direction vanishes and those in r and z directions (i.e., u and w) are independent of 

. Using the pressure method, the nonzero displacement components can be expressed 

as u(r,z) = u0(r)(1-4z
2
/t

2
)+u1(r) and w(r,z) = w(z). The constitutive equation for the 

rubber disc can be written, in terms of the strain components (rr, and zz), mean 

pressure (p) and bulk modulus (K) of rubber as follows: 
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Figure 1.  Uniform compression of a circular fiber-reinforced rubber layer with a central hole. 

/     rr zz p K                        (1) 

rr, and zz can be expressed in terms u0, u1 and w,using axisymmetric strain-

displacement relations. Substituting these relations into Eq. (1), then integrating the 

resulting equation through the rubber thickness, Eq. (1) can be rewritten in terms of the 

three unknowns of the problem: u0, u1 and p. The second governing equation for the 

problem, the equilibrium equation in radial direction for the rubber disc, can be written, 

in terms of the stress components rr, ,zzand rz, as follows: 

, , 0 
 


  rr

rr r rz z
r

                       (2) 

Using the “pressure” assumption and stress-strain relation for shear stress and strain 

(i.e., rz=rzG, where G is the shear modulus of rubber), Eq. (2) can be expressed in 

terms of the unknown. Finally, the third governing equation is obtained from the 

equilibrium of the reinforcing sheets, which are subjected to bonding shear stresses (rz 

and rz, see Figure 2), in radial direction.  Assuming that the sheets are in the state of 

plane stress, the equilibrium equation can be written, in terms of the internal forces per 

unit lengthin the sheet(Nrr and N) and bonding shear stresses, as follows: 

, 0   
   rr

rr r rz rz

N N
N

r
                    (3) 

Using the linear stress-strain relations, Nrr and Ncan be expressed in terms of u1, 

elasticity modulusEfand Poisson’s ratio f of the reinforcement. Similarly, bonding 

shear stresses can be expressed in terms of u1 and u0.Thus, Eqs. (1) to (3) constitute 

three governing equations for the studied problem. Since there is no applied load/stress 

at the inner/outer lateral faces of the layer or the edges of the sheets, the boundary 

conditions for the problem can be expressed as p = 0 and Nrr = 0 at r = a, R. Using these 

conditions, the unknown displacement functions (u0 and u1) and the mean pressure (p) 

can be obtained. For details, Pinarbasi and Okay (2011) is to be referred. 

The compression modulus for the studied layer (see Figure 1) can be computed 

from Ec = (P/A)/(/t), where P is obtained by integrating the mean pressure (p) over the 

bonded area and A = (R2
-a

2
). Thus, the compression modulus for a multi-layered 

fiber-reinforced elastomeric bearing (denoted as Ec,HC) has the following form: 
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Figure 2.  Forces on infinitesimal area of a reinforcing sheet (Pinarbasi and Okay 2011). 
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In Eq. (4), Ii and Ki (i=1,2) are the modified Bessel functions of, respectively, first 

and second kinds of order i.The closed-form expressions for Ai (i=1 to 4) are presented 

in Pinarbasi and Okay (2011). The other design parameter for the disc, namely, the 

maximum absolute shear strain in the rubber layer, has the following closed-form: 
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3 DISCUSSIONS AND CONCLUSIONS 

Figure 3 shows the variation of Ec,HC/G as a function of initial shape factor (defined as 

So=R/2t) for two different values of reinforcement rigidity, kf/Gt=30000 (which 

represents CFRP sheets used by Kelly (2002)) and 300,for three different values of 

radius ratio, =a/R=0, 0.01, 0.1 and 0.5 andrubber compressibility, =0.5, 0.4995 

(which represents natural rubber) and 0.49.As it is seen, Ec,HC increases asSoincreases 

until it reaches an asymptotic value, which increases as kf/Gt and 0.5. The 

presence of hole decreasesEc,HC considerably if So, kf/Gtand are large. For example, for 
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So=30 and kf/Gt=30000, the ratio of Ec,HC to Ec,C (i.e., Ec for circular case) is 66% and 

21% respectively when =0.1 and 0.5 if =0.5, but 93% and 62% if =0.4995. Figure 4 

shows the variation of max/c (where c=/t) as a function of  for various values of So, 

kf and . As shown in the graphs, max/c increases considerably as 0. The increase is 

larger if So, kf and  are large. However, when >0.1, max/6Soc (ratio to the 

incompressible circular steel-reinforced case) is less than 2.5 even when =0.5. 

 

  

  

  
 

Figure 3.  Effect of the existence of a central hole on compression modulus. 
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Figure 4.  Effect of the existence of a central hole on maximum shear strain due to compression. 
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