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Construction projects are predominantly managed with a heavy reliance on the 
knowledge and experience of construction professionals and supporting enterprise 
resource planning systems.  The construction sector continues to struggle with the 
management, analysis, and transformation of data into useful information for improved 
decision-making.  While development of data-driven decision support systems for 
construction would improve the accuracy and relevancy of decision-making processes, 
several challenges currently limiting the incorporation of dynamic project data into 
prediction models must first be addressed.  An envisioned solution for advancing data-
driven decision making in construction using a simulation-based analytics framework 
capable of overcoming such limitations is presented and discussed.  Concept feasibility 
is demonstrated through the successful completion of a prototype for quality-associated 
decision support that has been developed using the proposed conceptual framework. 
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1 DECISION SUPPORT IN CONSTRUCTION 

Competitiveness of the construction sector depends on numerous improvements across multiple 

areas of project delivery as documented by many researchers and industrial organizations 

(Construction Industry Institute 2008, Construction Owners Association of Alberta 2015, Hanna 

2016).  Yet in spite of these advances, the construction industry remains challenged by a slow 

adoption of innovation and technological developments, high capital costs, decreased labor 

productivity, and reduced operational efficiency.  While the construction industry has adopted a 

variety of information technology solutions (e.g. commercial enterprise resource planning systems, 

scheduling and contract management software, or in-house computer systems) for improved 

decision support, these systems lack the quantitative predictive capabilities required to produce 

desired results (Oracle 2010, Pritchard et al. 2012).  Accordingly, construction management 

continues to rely heavily on the subjective knowledge and experience of construction professionals 

whose ability to capture intricate details of various processes, resources, and uncertainties 

associated with project execution are often limited (Manyika et al. 2011). 

 

2 DATA-DRIVEN DECISION SUPPORT SYSTEMS:  THE IDEAL 

To remain competitive, the construction industry must take advantage of newly emerging 

technologies and tools to facilitate improvements in production efficiency, product quality, and 

safety management practices.  A new generation of decision support systems capable of (1) 

providing interpretable, up-to-date project information, (2) generating reliable project predictions 
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throughout both the project planning and execution phases of construction, and (3) allowing for 

analysis and investigation of various potential project scenarios would represent a notable 

advancement in how construction is managed in practice.  Despite the desire for such tools, 

however, analytical systems capable of comprehensively and automatically generating reliable 

decision support outputs from existing project data have yet to be successfully implemented in 

construction practice. 

 

3 ENVISIONED SOLUTION:  SIMULATION-BASED ANALYTICS 

Achievement of the ideal will require the development and implementation of systems that can 

integrate a variety of datasets and incorporate associated project uncertainty to dynamically 

reflect actual project conditions in an automated manner.  Simulation modeling has emerged as a 

technological means of addressing the dynamicity and uncertainty associated with construction 

operations for improved system predictability (AbouRizk 2010) and represents a technique capable 

of providing the functionalities required to create this ideal system.  

However, as with many decision support systems (Darema 2004), a lack of (1) appropriate 

approaches at the application level for enabling dynamic feedback and measurement coupling, (2) 

techniques for interfacing applications with measurement devices and instruments, (3) application 

algorithms adaptable to dynamic data inputs, (4) methods for handling uncertainty in input data, 

and (5) computer programs capable of supporting such environments have considerably limited 

the integration of real construction project data into simulation models, in turn, limiting the 

predictive capabilities of current systems.  Indeed, models stemming from this work have 

remained limited to specific construction applications (e.g., module yard schedule, crane selection 

and allocation).  The inability of simulation methods to achieve full, effective integration into 

organizational decision-making (Akhavian and Behzadan 2015) is due, primarily, to the inability 

of current process interaction-based simulation modeling methods to automatically recalibrate 

themselves as new project data are collected, greatly limiting their applicability during project 

delivery.  Successful implementation of a simulation-based analytics solution will require: 

• Advances in dynamic, data-driven simulation applications for decision support in 

construction engineering and management 

• Investigation of methods for integrating (1) data that are currently collected, (2) 

simulation-derived data to supplement existing data when required, (3) measurement 

processes that are steered, as required, to enhance decision-support when possible, and 

(4) decision support applications 

• Examination of structured methods for integrating analytics into organizational decision-

making to improve effectiveness 

• Transitioning the role of simulation beyond traditional analysis into an essential 

component of decision support 

 

4 SIMULATION-BASED ANALYTICS FOR CONSTRUCTION 

We have explored and built upon recent advances in data analytics applications (Barton and Court 

2012), dynamic data-driven application systems (Darema 2004), and simulation-based analytics 

(Dube et al. 2014) to develop a conceptual, simulation-based analytics framework for 

construction (SAC) that we believe possesses the attributes and characteristics required to support 

data-driven decision-making in construction.  The conceptual SAC framework, illustrated in 

Figure 1, is comprised of data adapters, which are involved in data transformation and 

preparation, and analysis modules, which are composed of a suite of algorithms that interact with 
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simulation components to facilitate production of required decision support metrics.  Rationale 

and functionalities of each component are detailed as follows. 

 

 
 

Figure 1.  Proposed simulation-based analytics for construction framework. 
 
4.1    SAC Framework Components 

Construction companies handle vast amounts of raw data, which can be classified into two main 

types, namely dynamic data stored in data management systems (e.g., time sheets, safety 

incidences, quantities) and static data passed on from engineering (e.g., 2D, 3D, and BIM 

models).  Raw data are generally not effective for decision support, as they are not always 

reliable, aggregated at the required level, or transformed into useful information.  The data 

adapter portion of the framework is required to transform raw data into useful information.  Data 
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adapters apply a variety of analytical methods (e.g., data mining) to identify anomalies and 

missing data as well as simulation models to populate and validate data. 

While the data adapter is responsible for collecting, organizing, and cleaning raw data, 

transformed data are not often stored in an easily interpretable format.  As such, the conceptual 

SAC framework contains an analysis module, which is comprised of a suite of algorithms that 

facilitate production of required metrics for decision support.  The primary function of this 

module is to drive the simulation process, invoking the appropriate analytic (e.g., descriptive 

analytic from a database query or predictive analytic derived from a data-driven simulation) and 

cycling through the process until decisions are made.  The simulation component module includes 

(1) process interaction models, which simulate production processes, supply market, logistical 

issues, external factors (e.g., weather and economic conditions) and (2) factor models, which 

estimate the states of various measures, such as facility productivity based on values of identified 

influencing factors.  Factor models, which can take the form of artificial neural networks, 

structural equations models, cognitive maps, and tree models, follow a three-stage process of 

factor identification, Principal Component Analysis, and factor analysis or model training.  

At the core of the proposed framework is a dynamic data-driven application system (DDDAS) 

concept (Darema 2004).  This concept refers to a paradigm that strives to seamlessly couple 

simulation and measurement (i.e., data collection) disciplines, enabling the dynamic addition of new 

data into simulation models.  The addition of new data (e.g., archival data, real-time generated data, 

or sensor-detected measurements from actual systems) triggers an automated, internal calibration of 

the original model, increasing the representativeness and, in turn, the reliability of system 

predictions.  DDDAS concepts have been successfully applied to model a variety of systems, 

including smart cities (Fujimoto et al. 2016), expressway traffic (Sunderrajan et al. 2016), dynamic 

manufacturing (Kück et al. 2016), and for crisis management analysis (Badr et al. 2015).  Recent 

works in the construction domain include the development of a tunneling application, where data 

are collected in real-time and applied to simulation models to enhance predictions (Bi et al. 2015), 

and a framework for model-driven acquisition and analytics of visual data using unmanned aerial 

vehicles for construction progress monitoring (Lin et al. 2015). 

 

4.2    Simulation Methods and Techniques to Facilitate Deployment of the Framework 

The virtual environment is responsible for enabling dynamic data-driven simulation and for 

supporting the integration of various forms of simulation.  It can be built using extensions of 

COSYE (AbouRizk and Hague 2009), Simphony (AbouRizk et al. 2016), and/or a variety of 

other information technology and modeling tools as required.  Key elements of the virtual 

environment are detailed as follows. 

 

4.2.1    Data preparation algorithms 

Data adaptors are built to transform, clean, and prepare data for use in the analytics.  Prepared 

data are warehoused using data incubators similar to those described by Fan et al. (2008) and 

Hammad (2009).  Warehouse models consist of an object-oriented, integrated, non-volatile, and 

time-variant collection of data capable of supporting management decisions (Inmon 2005) and of 

providing a variety of decision support capabilities that cannot be attained using relational 

databases.  Such capabilities include (1) validation, transformation, and scrubbing of data to 

ensure quality prior to storage, (2) collection and integration of data from various sources, and (3) 

use of multi-dimensional data models to organize data by subject allowing decision-makers to 

perform data analysis from various perspectives at various levels of detail.  Concurrently, online 

analytical processing of data warehouses facilitates user-directed information retrieval and 
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interactive analysis through visual operations of drill-down, roll-up, slicing and dicing, and 

pivoting. 

Notably, data adapters should be designed specifically for particular datasets.  For example, 

data adapters for unconventional data, such as images, differ from those designed to extract and 

transform data retrieved from enterprise resource planning systems, as image data must be 

inferred from geometric entities as opposed to being selected from an information system’s 

database.  Data adapters, therefore, may be designed to extract geometric model information from 

3D models (Han et al. 2017) or to contain a variety of computer vision algorithms capable of 

reconstructing as-built 3D point cloud models from photographs (Martens 2017).  The overall 

objective of this step is the development of intelligent data adapters that can identify a variety of 

information for planning various construction activities and processes. 

 

4.2.2    Simulation modeling infrastructure 

To function successfully, the framework must combine and integrate various subsystems that 

execute in a harmonious manner.  This will require advancing construction simulation methods to 

facilitate real-time communication, enable dynamic data-driven simulation approaches, and 

accommodate hybrid simulations (e.g., system dynamics, agent-based modeling, discrete-event 

simulation, construction/time-stepped simulation, and fuzzy cognitive maps).  

Simulation models often use statistical distributions or Markov chains to represent 

uncertainties that exist in the systems they are analyzing.  Although useful for assessing static 

data, the ability to recalibrate these models following the incorporation of new data remains 

challenging.  Bayes’ theorem, which describes a method for updating probabilities when provided 

with new evidence, can be used for updating statistical distributions.  The use of Bayes’ theorem 

reported in literature, however, remains limited to normal distribution updating (Lynch 2007, 

Chung et al. 2004) due to the low dimensionality associated with normal distribution parameters 

and to the computational challenges associated with evaluating Bayes’ mathematical formulation 

for updating probabilistic models.  Various numerical techniques, including appropriate conjugate 

selection (Gelman et al. 2013) and numeric integration, will allow updating capabilities to be 

extended to other distribution types commonly used in construction simulation.  Markov chain 

updating will be achieved using a variety of approaches, including application of Bayes’ theorem 

variants and techniques such the Baum-Welch (Rabiner 1989), Ensemble Learning (MacKay 

1997), and Viterbi (Rabiner 1989) algorithms. 

 

5 SIMULATION-BASED ANALYTICS FOR CONSTRUCTION 

Feasibility of the conceptual framework is being examined through the completion of specialized 

decision support prototypes, including an earned value management prototype, which captures 

project schedule while considering the historical performance of individual activities, and a safety 

management prototype, which allows users to test and predict the impact of various safety 

management strategies on safety performance.  

Concept feasibility has been demonstrated through the successful completion of a prototype 

for quality-associated decision support developed using SAC concepts.  This prototype uses 

quality management, engineering design, and cost management data to determine operator quality 

performance, product complexity, and quality performance for project quality forecasting and 

quality-induced rework cost management.  The specialized framework underlying the prototype 

contains several SAC framework components, namely a data adapter, data analysis module, 

simulation module, and decision support module, which have been customized to facilitate 
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system application for quality-associated decision support. R (R Core Team 2017) programming 

software for statistical computing and graphics was utilized to drive framework components.  

 

5.1    Data Sources and Data Adapter 

Data sources available for analysis include dynamic quality management data (e.g., quality 

inspection results, rework time, and operator information) and static engineering design data (e.g., 

product design attributes, such as pipe material, thickness, and diameter).  A data adapter specific 

to this dataset was built to transform raw data, through data connection (i.e., integration of 

multiple sources of data), wrangling (i.e., conversion of data into a tabular format), and cleaning 

(i.e., noise reduction and omission of missing values) into a compatible and interpretable dataset. 

Example of data adapter inputs and outputs are detailed in Figure 2. 

 

 
 

Figure 2.  Example of real-time updating mechanism of quality performance. 

 

5.2   Analysis Module 

The analysis module functions to convert transformed data into useful decision support 

information or into a format that is suitable for simulation input.  In this specialized framework, 

the analysis module is responsible for determining quality performance (i.e., failure rates) of 

individual operators and of particular product designs. 

 

5.3   Simulation Module and Decision-Support Outputs 

The simulation module generates data for desired prediction metrics for a given decision support 

application using transformed data from the data adapter and/or analysis module.  The specialized 

framework uses a variety of simulation or simulation-associated components.  Specifically, a 

Metropolis-Hasting Algorithm component is used to convert binary quality data (i.e., failure 

rates) into distributions for simulation purposes.  A Monte Carlo simulation module (Ji and 

AbouRizk 2016) and an absorbing Markov chain (Ji and AbouRizk 2018b) are used to 

incorporate uncertainty and to model the rework process for forecasting purposes, respectively. 

Specific functionalities of the simulation module are described as follows. 

 

5.3.1    Bayesian-based quality performance modeling 

To estimate product quality performance, a Bayesian-based solution was developed to drive a 

distribution for incorporating uncertainty (Ji and AbouRizk 2017).  In addition to providing more 

accurate, reliable, and interpretable estimation of product quality performance, the proposed 

solution addresses some of aforementioned challenges associated with simulation model 

updating.  Application of these methods allows the simulation models to realign with dynamic, 
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real-time data generated by the actual system.  As demonstrated in Figure 3 the quality 

performance distribution can be updated using real-time quality inspection data.  
 

 
 

Figure 3.  Example of real-time updating mechanism of quality performance. 
 

The components comprising the specialized simulation-based analytics environment allows 

simulation models to be adjusted by real-time data and measurements.  The approach also 

develops descriptive and predictive analytical metrics, namely operator quality performance 

measurements and project quality performance forecasts, for supporting and improving decision-

making processes (Ji and AbouRizk 2018a).  For instance, by using historical product quality 

performance data as inputs, quality performance for a new project can be simulated to achieve a 

quality performance distribution at a project-level, supporting decision making in consideration of 

particular risk attitudes (Figure 4). 
 

 
 

Figure 4.  Workflow of the simulation model for project quality performance measurement. 
 
5.3.2    Product complexity clustering 

To further extend the functionality of the proposed system, a hybrid data mining approach for 

quantitatively analyzing product complexity from product quality performance data (i.e., failure 

rate) was developed (Ji et al. 2018).  The proposed model is comprised of three steps, which (1) 

measure product complexity by introducing a Bayesian-based nonconforming quality 

performance indicator, (2) score each type of product complexity by developing a Hellinger 

distance-based distribution similarity measurement, and (3) cluster products into homogeneous 

complexity groups by using the agglomerative hierarchical clustering technique.  Practitioners 

can implement this approach to enhance their product complexity management practices from the 

perspectives of (1) strategic bidding, (2) complexity-driven production planning, and (3) 

customized training.  As demonstrated in Figure 5, practitioners can directly obtain product 

design information, complexity score, total business percentage, and its corresponding 

complexity level from the outputs.  
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Figure 5.  Example of outcomes of product complexity analysis. 
 
5.3.3    Rework cost estimation and control 

A novel functionality for supporting quality-induced rework cost estimation and control for 

construction product prefabrication was also developed using absorbing Markov chains (Ji and 

AbouRizk 2018b).  Two types of decision support metrics are established to support decision-

making processes, namely (1) rework cost estimation during the project planning phase and (2) 

rework cost control during the project execution phase.  As shown in Figure 6, a distribution of 

rework cost estimation is simulated in project planning phase and is utilized to construct a control 

chart for monitoring purposes.  At each time point, the simulated rework cost is updated by 

incorporating real-time quality and rework cost information.  Abnormal patterns can be detected 

for practitioners to analyze root causes and improve their operation processes. 
 

 
 

Figure 6.  Decision support metrics for quality-induced rework cost estimation and control. 
 
6 CONCLUSIONS 

The use of predictive analytics and other advanced data analytics methods capable of extracting 

value from existing data is becoming increasingly common and employed across all types of 

industries and sectors (Manyika et al. 2011).  While the construction industry is advancing the way 

they collect and store data, methods capable of transforming raw data into valuable and 

interpretable information for decision-support remains limited (Dean 2014).  The simulation-based 

analytics framework for construction proposed here represents a new approach for decision support 

that takes advantage of emerging concepts and technologies in data analytics and computing sciences.  

While demonstration projects and prototypes developed using a simulation-based analytics 

approach demonstrate the feasibility of the proposed framework, transformation and refinement of 

demonstration projects into automated, fully-functional decision support systems will require 

additional research and development in the areas of distributed simulation, information integration, 
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and dynamic data updating.  For such systems to become implemented and universally-accessible in 

industry, research efforts must also focus on creating systems that are easy-to-use and relevant to 

decision makers.  Collaborations with industry will be essential for integrating analytics into 

organizational effectiveness and for enhancing sector efficiency and competitiveness. 
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