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As known, the modulus of subgrade reaction of soil, ks, is an essential parameter in 
designing flexible, shallow foundations based on the Winkler spring hypothesis, where, 
the foundation soil is modeled as a series of independent (elastic) springs having 
constant ks.  In this paper the various methods for calculating the ks value are discussed, 
indicating that the more suitable one is VeVLc¶V ks=0.65[EB4/(EbIb)]1/12E/[B(1–v2)], 
where, E and Ȟ are the elastic constants of soil and Eb, Ib and B are the modulus of 
elasticity of the foundation material, the moment of inertial of the cross-section of the 
foundation and the foundation width respectively.  In addition, it is recommended that, 
the proper soil modulus value is the one corresponding to Ȟ=0 for consistency with the 
defRUPaWLRQ SaWWeUQ Rf WLQNOeU¶V VSULQgV (compression with no lateral deformation).  In 
this respect, the author offers an effective method for calculating the equivalent elastic 
constants (Eeq, Ȟeq) for horizontally stratified soil mediums supporting shallow 
foundations.  The same method can also be applied to reducing any homogenous (E, Ȟ) 
soil medium to an equivalent one having Ȟeq=0 and modulus Eeq.  

Keywords:  Winkler spring model, Mat foundations, Strip foundations, Flexible 
foundations, Equivalent elastic constants, HeWpQ\L¶V PRdeO, PaVWeUQaN¶V PRdeO, KeUU¶V 
model, Elastic settlement analysis, SWeLQbUeQQeU¶V eOaVWLc VeWWOePeQW VROXWLRQ.  

  
 

1 INTRODUCTION 

The modulus of subgrade reaction, ks, is an essential parameter in a Winkler¶V spring type of 
analysis of shallow foundations, mainly flexible strip and mat foundations.  In this type of 
analysis, an array of springs replaces the soil medium below the foundation; in this respect, ks 
plays the role of the constant of springs.  Apparently, in either homogenous or heterogeneous 
mediums, this value should effectively reflect the deformability of the medium examined.  When 
plate-bearing test data are used, the basic equation for ks is: 

sk q G=                                     (1) 

where, q is the load and į is the respective displacement of the bearing plate (Eq. (1) is also the 
definition of ks).  It is apparent that, this value better represents homogenous soil mediums, 
supposing of course that the proper corrections have been applied for both the size and the shape 
of the footing (see Terzaghi et al. 1996).  The influence depth of real-size footings, in practice, is 
often extended to soil strata with considerably different soil moduli as well as different 
groundwater conditions; thus, the use of Eq. (1) should be used with great caution.  According to 
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Terzaghi et al. (1996) the influence depth of a BxL footing is zl=2B(1+logL/B), meaning that zl for 
a square loading plate of edge 0.3 m is only 0.6 m. 

In addition to that the fact that ks should effectively consider the stiffness of any soil layer 
being within the influence depth of footing, the ks value should consider the stiffness of footing 
itself, the presence of groundwater or a possible groundwater rise in the influence zone 
(Pantelidis 2020a) and the fact that the modulus of soil is affected by both the shape of footing 
and the location on the plan-view of footing (Pantelidis 2019b).  An overview of the most popular 
methods for calculating ks is given in the section below. 
 
2 SELECTING THE PROPER METHOD FOR CALCULATING ks 

A first alternative to the method relying on the plate-bearing test (recall Eq. (1)) is the use of the 
elastic theory (i.e. Steinbrenner's 1934 or HaUU¶V 1966 VROXWLRQ).  However, the latter, although 
suitable for the calculation of settlement of footings on multilayer soil systems applying the 
principle of superposition, does not take into account the rigidity of footings.  The basic equation 
adopting Steinbrenner's formulations has as follows in Eq. (2) (Bowles 1996):  

2' '(1 )s s Ek q E a B I IG Qª º= = �¬ ¼                           (2) 

where, α’=4 and Ǻ’=Ǻ/2 for the center of foundation (α’=1 and Ǻ’=Ǻ for the corner), Is is the soil 
stratum thickness factor while IE the embedment depth factor.  This approach can also take into 
account the spatial variation of ks over the plan-view of footing.  

A second alternative is the ks value to be calculated from the allowable bearing stress over the 
corresponding settlement, however, this is essentially the same in concept with the procedure 
mentioned immediately above.  As any widely acceptable elastic settlement analysis method can 
be adopted (EN 1997-1 2004), probably one of the most attractive choices to practitioners is the 
Ma\Qe aQd PRXORV¶ (1999) method, as it considers a number of factors, including the rigidity of 
footing.  However, Ma\Qe aQd PRXORV¶ method returns overpredicted settlement values.  
Indicatively, assuming a footing with B=1 m and L=10 m over a medium with constant E with 
depth and v=0.1, Whe Ma\Qe aQd PRXORV¶ method gives įE/Bq§3.5 for the center of the footing, if 
the latter is flexible, and approximately equal to 2.7 if the same footing is rigid; both values are 
much greater compared to those predicted from the theory of elasticity.  Relatively, įE/Bq=2.5 
XVLQg HaUU¶V (1966) VROXWLRQ aQd 2.0 XVLQg Whe ³chaUacWeULVWLc SRLQW´ concept (Kany 1974) (the 
settlement at the so-caOOed ³characteristic point´ is considered to be the same as the settlement of 
the footing if the latter is assumed rigid).  The inconsistency with the theory of elasticity (i.e. 
HaUU¶V 1966 solution) increases as the L/B ratio increases and it is already quite visible for L/B 
ratios as low as 3 (see comparison offered by Ma\Qe aQd PRXORV¶ 1999).  

A third alternative is the ks expression derived from Vesic (1961).  Vesic showed that for any 
beam of infinite length on elastic semi-space, Whe WLQNOeU¶V h\SRWheVLV LV YaOLd, ZheUe, aQ\ VXch 
problem can be treated with reasonable accuracy using the following expression for the modulus 
of subgrade reaction per unit width of beam:  

4

12
20.65

(1 )b b

EB Ek
E I B Qf =

�
                             (3) 

where, EbIb and B are the stiffness and the width of the beam and E and Ȟ are the two elastic 
constants of soil.  Eq. (3) can also be used for calculating the ks value of beams with ȜL>2.25, 
where, Ȝ=[ksB/(4EbIb)]1/4 (Vesic 1961).  An important observation is that, Eq. (3) considers the 
rigidity of footing but, as it has been offered, it stands only for homogenous mediums.  Thus, for 
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stratified soils, the original soil system must be replaced by an equivalent homogenous medium 
having elastic constants Ǽeq and Ȟeq.  The behavior of this equivalent medium must be identical to 
the original stratified one under the same loading conditions.  Indeed, for compatibility reasons 
with the Winkler type of analysis (vertical displacement with no lateral deflection), the Ǽeq value 
VhRXOd cRUUeVSRQd WR a PRLVVRQ¶V UaWLR YaOXe fRU VRLO eTXaO WR ]eUR, L.e. Ȟeq=0.   

Kerr (1965), in turn, considered two rows of springs, one over the other, combining 
WLQNOeU¶V (RU HeWpQ\L¶V 1950) PRdeO ZLWh PaVWeUQaN¶V (1954) model (see Figure 1).  Both 
PaVWeUQaN¶V aQd HeWpQ\L¶V PRdeOV aim at considering the shear interaction between the individual 
springs.  To this effect, additional mechanical elements was introduced in these models so that the 
springs to be interconnected.  More specifically, for considering the shear interaction between the 
springs, Pasternak used, in addition to the spring constant (ks), the shear modulus of soil (G).  In 
this respect, a beam or plate which h deforms only by transverse shear is used for connecting the 
ends of the springs (see Figure 1).  Regarding HeWpQ\L¶V PRdeO, a beQdLQg beaP RU SOaWe having 
stiffness D is assumed over the springs.  DeVSLWe Rf Whe LQcUeaVed cRPSOe[LW\ Rf KeUU¶V PRdeO, 
however, there is not convincing evidences in the literature that it simulates in an effective 
manner the behavior of a footing over a two-layer soil system.  In addition, KeUU¶V PRdeO ignores 
the thickness of the two soil layers and thus, great error may be introduced in the analysis as the 
actual magnitude of loads reaching the lower soil layer is greatly affected by the thickness of the 
upper layer.  Thus, the author sees no advantage Rf KeUU¶V PRdeO RYeU WLQNOeU¶V (RU HeWpQ\L¶V) 
model. 
 

 
 

Figure 1.  (a) KeUU¶V (1965) and (b) PaVWeUQaN¶V (1954) model for elastic foundations. 
 

Based on the above, the author suggests that VeVLc¶V (1961) method be used ±recall Eq. (3)±  
along with a PRLVVRQ¶V UaWLR YaOXe eTXaO WR ]eUR aQd Whe respective Eeq value.  This Eeq value 
should reflect the deformability of the stratified medium, adverse groundwater regime (or future 
groundwater rise), the embedment depth of footing as well as the effect of both the shape of 
footing and the location on the plan-view of footing on the elastic modulus of soil.  An in-depth 
review of the available methods calculating the equivalent elastic constants for the case of 
transversely loaded horizontally stratified soil mediums can be found in Pantelidis (2019a).  One 
of the main findings of this review paper is that, in the vast majority of the cases, the existing 
methods return unrealistic Eeq values.  Indeed, for the cases examined by Pantelidis (2019a), the 
maximum relative error introduced in the analysis using EgRURY aQd NLchLSRURYLch¶V (1961) 
weighted average method (best known as Bowles¶ (1996) method): 

( )
1 1

n n
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i i
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= ¦ ¦                               (4) 
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is as high as 83% and 63% on the unsafe and safe side respectively (where, Ei and hi are the 
modulus and the thickness of the i-th layer respectively; the number of soil layers is n.  Moreover, 
Whe cXUUeQW PeWhRdV QegOecW Whe PRLVVRQ¶V UaWLR Rf VRLO VWUaWa, WhXV, UedXcLQg Whe SURbOeP WR Whe 
Ȟeq=0 case is not possible.  Consequently, the use of the current methods may easily lead to either 
non-economic or unsafe designs.   
 
3 THE EQUIVALENT ELASTIC CONSTANTS OF SOIL MEDIUM (Eeq, νeq)  

Apparently, there is an equivalent homogenous medium having pair of elastic constant values 
(Ǽeq, Ȟeq) that under the same loading conditions produces the same settlement with the original 
stratified medium.  Adopting SWeLQbUeQQeU¶V (1934) solution for a general BxL footing and 
equating these settlements as in Eq. (5): 

 ( ) ( ) ( )
2 2
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Solving the latter as for Ǽeq, the following expression for Ǽeq is obtained in Eq. (6): 
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where, Hi is the vertical distance extending from the level of foundation to the bottom of the i-th 
layer.  Also, because H0=0 m, Is(H0,Ȟ1) also equals to zero.  Cw is the water table correction factor 
(Das 2017; Pantelidis 2020a; b) incorporated in the classical elastic solution.  Eq. (6) has two 
unknowns, namely, Eeq and Ȟeq; however, the only real unknown is the Eeq. Regarding Ȟeq, any 
logical Ȟeq value can be used, under the precondition that this value will be used along with the 
respective Eeq value derived from Eq. (6).  Besides, as shown later, the same settlement profile is 
obtained for any (Eeq, Ȟeq) pair of values satisfying Eq. (6).  In a Winkler analysis, it is mandatory 
hRZeYeU WhaW Whe eTXLYaOeQW PRLVVRQ¶V UaWLR Rf VRLO be eTXaO WR ]eUR, becaXVe Whe Ȟeq=0 value 
corresponds to the deformation pattern of springs (compression with no lateral deformation).  

It is noted that, Eq. (6) stands for any Is factor which is part of an elastic settlement analysis 
equation of the form: 

( )( )2Width or Diameter of foundation 1 s Eq I I EU Q= �                 (7) 

Regarding the embedment depth of footing,  the author suggests the IE factor given by Díaz 
and Tomás (2014) which is the product of an extensive parametric analysis based on 1,800 three-
dimensional finite element models.  
 
4 APPLICATION EXAMPLES 

SchPeUWPaQQ¶V (1970;  ³FLg. 6´) aSSOLcaWLRQ e[aPSOe is used as basis for setting up the examples 
presented herein.  In this respect, the soil medium consists of 11 horizontal soil layers over 
bedrock (see Figure 2a).  Three circular footings are considered, a flexible, a smooth rigid and a 
rough rigid footing resting on the surface of the above mentioned stratified medium; in all cases, 
the loading was uniform and equal to 200 kPa, while the diameter of the footing was 2.6 m.  For 
aOO VRLO Oa\eUV, a PRLVVRQ¶V UaWLR YaOXe eTXaO WR 0.4 ZaV aVVXPed (YaOXe cRQVLdeUed b\ 
Schmertmann).  The equivalent soil mediums were compared against the original stratified one 
WhURXgh fLQLWe eOePeQW aQaO\VLV XVLQg RRcVcLeQce¶V RS2 ZLWh Whe cULWeULRQ beLQg WhaW, WZR 
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mediums are equivalent if they yield the same settlement under the same loading conditions.  
Considering that Ȟeq=0.4, Eq. (6) gave Eeq=9132 kPa while for Ȟeq=0, Eeq=11108 kPa.  As shown 
in Figure 2b, the equivalent soil mediums gave almost identical settlement profiles, indicating the 
validity of the proposed method.   

A second example is given.  Let the long footing of Figure 3a founded also on the surface of 
the stratified soil system of Figure 2a; let also assume that the correction for footing shape has 
already been applied to these E values (Pantelidis 2019b).  For convenience it is supposed that the 
elastic modulus below any point of the footing is equal to the respective one at the center of it.  
Using Eq. (6), Eeq=9743 KPa for Ȟeq=0.4 and Eeq=11599 KPa for Ȟeq=0 (for the corner of footing it 
stands that Eeq==10726 KPa and 12770 kPa respectively), whilst according to Bowles (Eq. (4)) 
Eeq=17765 KPa (the latter is independent of the location on the plan-view of footing and the 
PRLVVRQ¶V UaWLR value).  BRZOeV¶ VXggeVWLRQ fRU Whe LQfOXeQce deSWh Rf fRRWLQg (i.e. zl=5B) has been 
applied to all cases.  Applying Eq. (3), ks was found equal to 7250 kN/m3 for both (Eeq, Ȟeq) pair of 
values, whilst applying Eq. (4), ks was equal to 13218 kN/m3.  It is confirmed that the foundation 
is flexible, as ȜL= 3.7>ʌ (see Section 2).  The analysis with jwinkler for strip footings (open 
source educational program; http://users.auth.gr/fkar/jWinkler/jWinkler.html) gave no noticeable 
difference in moments and shear forces of footing (diagrams not shown here).  Small difference 
was observed in the soil reaction diagram and significant difference was found in the derived 
settlements (see Figure 3b).  Favoring reproduction of author¶s example, the density of springs 
was 10 springs/m, whilst the elastic constants of concrete was Eb=21 GPa and Ȟb=0.15. 
 

        
 

Figure 2.  a) Soil strata thickness and soil elastic moduli values (from: Schmertmann 1970);  Ȟ=0.4 for all 
soil strata, b) Settlement versus distance from the center of circular footing example chart.   

 
5 SUMMARY AND CONCLUSIONS 

As known, the modulus ks, which is a measure of soil-structure rigidity, is widely used in 
designing flexible, shallow foundations using the Winkler spring hypothesis, where, the 
foundation soil is conveniently replaced by an array of springs having constant ks.  Among the 
available methods discussed in the present paper for calculating ks, the author suggests the use of 
Vesic¶V (1961) approach.  The latter requires both E and Ȟ of soil to be known.  However, because 
Whe defRUPaWLRQ SaWWeUQ Rf WLQNOeU¶V VSULQgV corresponds WR aQ eTXLYaOeQW PRLVVRQ¶V UaWLR YaOXe 
for soil equal to zero (i.e. YeUWLcaO dLVSOacePeQW ZLWh QR OaWeUaO defOecWLRQ), VeVLc¶V PeWhRd VhRXOd 
be used along with the (Eeq, Ȟeq=0) pair of values.  In this respect a method for calculating the two 
equivalent elastic constants for the case of stratified mediums over a shallow foundation is 
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proposed.  The same method can also be used for reducing any homogenous (E, Ȟ) soil medium to 
an equivalent one having modulus Eeq and Ȟeq equal to zero.  The effectiveness of the proposed 
method was illustrated through application examples. 
 

 
 

Figure 3.  a) Geometry and loading of the example long footing, b) Soil reaction and settlement versus 
distance from the left edge of footing example chart.   
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