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Uncertainty can be defined as a state of either incomplete or otherwise bounded 
knowledge.  Simulation models, and the engineering systems that they represent, often 
contain various types of uncertainty.  Different approaches and theories can be applied 
to model these various types of uncertainty with a range of degrees in difficulty and 
accuracy.  The objective of this paper is to explain the various types of uncertainty 
found in simulation models and to examine where uncertainty can be better represented 
or potentially reduced.  To achieve this objective, a Monte Carlo Simulation model 
called the As-Planned Model is developed to estimate both cost and schedule using a 
risk-based approach for a simplified, Light Rail Transit construction project.  After the 
project is complete, the As-POaQQed PRdeO iV WheQ cRPSaUed WR Whe SURMecW¶V acWXaO 
results.  The resulting conclusions about various types of uncertainty are derived 
through both output comparison as well as uncertainty analysis. 
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1 INTRODUCTION AND LITERATURE REVIEW 

This paper investigates how various types of uncertainty are quantified in simulation models and 
identifies which types of uncertainty can be reduced.  Different approaches and theories can be 
used to represent uncertainty with varying efficacy.  When representing an engineering system 
using simulation, various types of uncertainties are propagated through the model and 
cumulatively affect results.  Uncertainty itself has been widely discussed in systems literature.  In 
engineering systems literature specifically, types of uncertainty and the various theories available 
to represent them have been identified.  Ayyub (2003) has classified the main sources of 
information uncertainty in engineering systems as ambiguity, likelihood, approximations, and 
inconsistency.  Methods for estimating model uncertainty include common approaches, such as 
the Taylor Series Method and Monte Carlo Simulation (Brown and Heuvelink 2006), as well as 
novel approaches such as machine learning techniques (Solomatine and Shrestha 2009).  For the 
purposes of uncertainty analysis, Monte Carlo Simulation is preferred because it can be applied 
more generally and requires fewer assumptions and user inputs (Brown and Heuvelink 2006).  
Brown and Heuvelink (2006) define uncertainty propagation as a scenario where uncertainties in 
input data and models lead to uncertainties in the model output, and they indicate that Monte 
Carlo Simulation is a very useful method for approaching this problem.  The Monte Carlo 
Simulation method randomly samples from the joint distribution of possible inputs and models 
uncertainty, generating a set of realizations of the system as model output.  Statistics generated 
from the sample set describe the extent of uncertainty in the simulation results.  This paper 
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combines, in a Monte Carlo Simulation model, various concepts discussed in the literature, 
including the representation of uncertainty and its potential reduction. 

Identifying different sources of uncertainty, strategically reducing cognitive sources of 
uncertainty by acquiring knowledge, and accounting for non-cognitive sources of uncertainty will 
allow engineers to optimize their models and better understand how uncertainty propagates within 
them.  Simphony.NET is used to create a model that integrates risk with cost and with schedule 
uncertainty to estimate costs and the schedule for a project (As-Planned model).  After 
completing the project, the model is updated to reflect the actual data accumulated (As-Built 
model).  Results of the As-Planned and As-Built model are then compared to investigate the role 
of uncertainty in the simulation and determine where improvements can be made.  The illustrative 
example is a theoretical, simplified Light Rail Transit (LRT) capital construction project.  With 
sufficient data, the methodology could be applied in a case study to any completed construction 
project.  Verification and validation of the model are also discussed. 
 
2 METHODOLOGY 

The overall approach is intended for construction projects with definable tasks (work packages) 
and is summarized in Figure 1. 
 

 
 

Figure 1.  Summary of the approach. 
 

To develop the As-Planned model, the project work packages and their anticipated 
relationships are required.  Additionally, estimated duration and costs of tasks are required.  
Estimates can be constant values or represented using a distribution if uncertainty exists.  Risks 
that affect the project cost or schedule need identification and quantification.  Particularly, a 
description of the risk, its likelihood, the impact, and the relationships to work packages (if any) 
are necessary.  Risks can be divided into two broad categories:  risks with potential schedule 
impacts and risks that do not impact schedule.  Uncertain risks should be represented using 
distributions.  Distributions and their parameters should be selected on their ability to represent 
uncertainty as accurately as possible since these selections can significantly affect model results 
(AbouRizk 2013).  Uncertainty about whether a selected distribution and parameters accurately 
represent uncertainty is a form of meta-uncertainty caused by approximation; Section 3 discusses 
this in more detail.  Estimated escalation rates (for both hard and soft costs), as well as profit and 
overhead for the project as a whole, are required.  Estimates of profit and overhead can be a fixed 
percentage of construction costs or represented using a distribution if uncertainty exists.  For hard 
and soft cost escalation, the percentage input can be a compounded percentage applied over the 
entire project term to simplify the model.  The simulation model is shown at a summary level in 
Figure 2.  Each work package for the project is represented using a Composite element, which 
contains the modelling elements required to track time and collect costs for the work package. 
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Figure 2.  A view of the As-Planned Model in Simphony.NET. 
 

Task elements contained within Composite elements represent the completion of work 
packages (shown in white).  The consequences of realized schedule risks (in red) are shown by 
holding the entity for a period of time.  The simulation includes several Execute elements, which 
run user-written code when an entity passes through the Execute element.  For this simulation, 
various code has been written within Execute elements to set global variables, track the time 
required to complete work packages while accounting for risk events, collect costs, and account 
for non-schedule risks.  The Probabilistic Branch element is used to model risks realization by 
routing entities based on the probabilities assigned to the element.  The Cost element simply acts 
as a repository of costs collected by the Execute elements.  This simulation performs 10,000 
iterations to ensure uncertain aspects of the model are sampled sufficiently.   

To develop the As-Built Model, actual project data are required, including relationships, 
durations, costs for each work package, realized risks and their impacts, and relationships to work 
packages (if any).  The actual escalation rates, as well as profit and overhead, are also required.  
Two key outputs are generated by the As-Planned and As-Built models:  the project duration and 
detailed cost report.  For the As-Planned model, outputs include the mean, standard deviation, 
minimum, and maximum of the project duration and costs.  For the As-Built model, the project 
duration and costs are deterministic, as the output is known.  With the model outputs, one can 
compare the data, and improve the understanding of uncertainty in the model. 
 
3 ILLUSTRATIVE EXAMPLE 

The illustrative example is a theoretical, simplified LRT construction project.  Using the 
simulation approach described in Section 2, the As-Planned model indicates an estimated mean 
duration of 570 days with a standard deviation of 43 days.  Over 10,000 iterations, the minimum 
and maximum durations were 447 and 764 days, respectively.  The As-Planned model indicates 
an estimated mean overall project cost of $155M with a standard deviation of $13M.  The 
distribution of overall cost from the As-Planned model is shown in Figure 3. 
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Figure 3.  Overall cost distribution generated from the As-Planned model. 
 

The As-Built model indicates an actual duration of 626 days and cost of $155M.  In the 
illustrative example, the actual duration and mean-estimated duration differed by 8.9% while the 
actual and mean-estimated cost differed by less than 0.1%.  The detailed costs from the As-
Planned and As-Built models can be compared at the package-level to highlight items where 
uncertainty substantially contributed to deviations between estimated and actual outcomes.  To 
address deviations and optimize the modelling approach, uncertainty should be identified and 
reduced with uncertainty analysis.   For the illustrative example, uncertainties are identified and 
categorized according to the literature (Ayyub 2003).   

Ambiguity arises from incompletely or incorrectly identifying possible outcomes (Ayyub 
2003).  In this illustrative example, the degree of ambiguity was relatively low:  a number of risks 
were identified during development of the As-Planned model, and only a subset of these was 
realized in the As-Built model.  Projects with a high degree of ambiguity can encounter the 
opposite scenario:  risks are not identified or adequately modelled but then are realized.  To 
reduce ambiguity, substantial effort is required to sufficiently account for relevant possible 
outcomes.  Cost-benefit analysis is recommended to compare the cost of risk identification and 
management. 

Likelihood is related to non-cognitive sources of uncertainty such as physical randomness 
and statistical uncertainty caused by sampling (Ayyub 2003).  For the illustrative example, 
physical randomness was broadly accounted for in the uncertainty of work package durations.  
For example, weather and geotechnical conditions were factors in determining pessimistic and 
optimistic durations for work package tasks.  To reduce likelihood uncertainty, physical 
characteristics including historical weather data and geotechnical investigations can be assessed 
and modelled using a variety of approaches.  Modelling physical characteristics with a higher 
degree of certainty also may reduce uncertainty in durations for work package tasks.  To reduce 
statistical uncertainty caused by sampling, a sufficient number of samples should be collected 
using Monte Carlo Simulation.  Byrne (2013) indicates that a confidence interval width of 0.01 
can be achieved assuming a 95% confidence level using as many as 9,604 iterations.   

Simplifications and assumptions can reduce the difficulty of modelling a system and are 
sometimes necessary to effectively model a complex process.  Assumptions and simplifications 
should be deliberately made and identified.  Cost-benefit analysis is recommended to compare the 
cost of avoiding simplifications and assumptions.  For the illustrative example, an assumption 
was that soft cost escalation applied to a single work package.  The assumption was found to be 
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valid in the As-Built model, but the uncertainty in that assumption was not accounted for in the 
As-Planned model.  Statistical distribution could be used to account for uncertainties related to 
simplifications/assumptions. Sources of vagueness include parameter definition, biases, and 
comprehension of complex systems (Ayyub 2003).  Where parameters are defined linguistically, 
fuzzy set theory can reduce uncertainty (Naderi 2008).  Qualitative verbal expressions for 
likelihood can also be represented using statistical distributions (AbouRizk 2013).  If linguistic 
parameters such as risk likelihood are defined and accounted for using statistical distributions or 
fuzzy set theory, uncertainty can be more accurately represented.  Where subjectivity is required, 
a variety of individual perspectives should be captured.  Residual bias can be captured by 
conducting a bias assessment.  Inconsistent information stems from both human and 
organizational errors (Ayyub 2003).  Where uncertainty is associated with inconsistency, bias 
random variables can account for the resulting errors (Ayyub 2003).  Remaining uncertainty can 
be collected in a bias assessment.  Non-abstracted aspects of a system are the aspects not included 
in a model (Ayyub 2003).  While abstracted aspects can account for some non-abstracted aspects, 
some non-abstracted uncertainty remains.  Unknown aspects of a system can result from 
unawareness of something unknown.  Bias assessment is based on two implicit assumptions:  ³(1) 
the value of the variable or parameter for the real system is known or can be accurately assessed 
from historical information or expert judgment; and (2) the state of knowledge about the real 
V\VWeP iV cRPSOeWe aQd UeOiabOe´ (A\\Xb 2003).  For the illustrative example, the first assumption 
is valid since the actual duration and cost are known.  As Ayyub (2003) states, the second 
assumption cannot generally be validated; however, the bias ratio remains a valuable indicator of 
uncertainty attributable to non-abstracted and unknown aspects of a system.  For the illustrative 
example, the bias was found to be virtually non-existent for cost uncertainty (0.9991) and low for 
schedule uncertainty (0.9105).   
 
4 VERIFICATION AND VALIDATION 

Model verification ensures both the program and implementation is correct; model validation 
ensures the model has a satisfactory range of accuracy for its use (Sargent 2007).  The As-Built 
model was verified by confirming that the outputs were identical to the system outputs.  The 
similarly structured As-Planned model is verified by extension.  Two validation tests were used.  
First, the bias ratio (Section 3) indicated that the cost and schedule predicted by the As-Planned 
model were similar to the As-Built model.  Second, the quantile-quantile (Q-Q) plots (Figure 4) 
indicate that output parameters of the As-Planned model do not significantly deviate from 
normality.  The model was verified and validated by an independent third party with knowledge 
of LRT construction and simulation modelling.   
 

       
 

Figure 4.  Q-Q plots comparing As-Planned model costs (left) and durations (right) to a normal distribution. 
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5 CONCLUSIONS 

The purpose of this paper is to investigate uncertainty quantification in simulations and which 
types of uncertainty can be reduced in engineering systems.  Simphony.NET was used to create an 
As-Planned model to estimate cost and schedule for a construction project using a risk-based 
approach.  After completing the project, actuals were captured in an As-Built model.  Results 
from the two models were compared; uncertainty analysis was used to identify where uncertainty 
could be reduced.  Bias assessment was used to account for non-abstracted/unknown aspects of 
the system.  A simplified LRT construction project served as an example.  The various types of 
uncertainty were identified as ambiguity, likelihood, approximations, inconsistency, and non-
abstracted/unknown aspects.  Approaches for reducing uncertainty varied.  Some types of 
uncertainty (ambiguity and likelihood) can be reduced by enhancing knowledge.  Uncertainty 
related to inconsistency, or non-abstracted/unknown aspects, are best handled using bias 
assessment.  There are opportunities to improve how uncertainty is accounted for in simulations.  
Additional research is required to understand the propagation of uncertainty throughout a model, 
particularly when different types of uncertainty are represented in a simulation model. 
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