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For the load paths with small or no confining pressure, the nucleation, growth, and 

coalescence of cracks and micro-cracks are the main sources of non-linearity in the 

observed behavior of concrete.  The formations of cracks and micro-cracks destroy 

material bonds and render the material more compliant.  These are typically 

irreversible internal changes and lead to strong directionality in concrete response.  To 

model such nonlinear material behavior, a constitutive law for concrete utilizing 

damage mechanics is presented for small and isothermal deformations.  The general 

theory is cast within the framework of the internal variable theory of thermodynamics 

where the dissipation inequality is used.  A damage criterion is subsequently obtained 

using a damage function and the loading-unloading statement is provided.  The 

decomposition of the compliance tensor into damaged and undamaged states is 

outlined and the flow rules for the inelastic strains are provided.  Specific damage 

response tensors for isotropic and anisotropic modeling is proposed along with 

numerical simulations that are plotted for illustrating differences between isotropic and 

anisotropic formulations.  
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1 INTRODUCTION 
Unlike metals where the nonlinearity arises due to the slip along preferential planes and is caused 
by the presence of local shear stresses, the nonlinear behavior in brittle solids is dependent on the 
presence or the lack of confining pressures on them.  Under low confining pressures, the behavior 
of brittle solids is influenced and is driven by the formation of micro-cracks and micro-voids.  In 
some brittle solids, such as ceramics, microcracks are already present at grain boundary facets 
due to cooling processes (Ortiz 1987).  Similarly, pre-existing damage zones are documented to 
exist at the interfaces of aggregates and mortar in concrete.  Under far-field stress conditions, 
micro-cracks that are favorably oriented became active and propagate until arrested by inclusions 
or phases that possess higher fracture toughness.  

At high confining pressures the ductility and strength of brittle materials are enhanced as the 
formations of micro-cracks and micro-voids are inhibited.  Under this loading condition, plastic 
flow becomes the dominant micro-structural changes and the elastic properties remain practically 
unchanged (Hueckel and Maier 1977).  The photographs produced by Kovari and Tisa (1974) on 
marble specimen under confining pressures show the slip lines clearly. 

To model the inelastic behavior of brittle solids undergoing micro-cracking, damage 
mechanics theories have been proposed and successfully used (Saboori et al. 2014, Saboori et al. 
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2015, Thapa and Yazdani 2014).  In this paper, a class of damage mechanics theories where the 
compliance tensor is regarded as an internal variable is presented in the stress-space.  The results 
of three different damage evolution laws are shown along with an isotropic damage formulation 
for comparison.  The reason for the inclusion of isotropic formulation is that there are situations 
where damage can remain distributed in a statistical sense and a closer look at isotropic damage 
formulated is therefore warranted.  
 
2 ANISOTROPIC DAMAGE 
To facilitate the formulation that will follow, it is helpful to define a cross-composition operation 
of tensors, “⊗"”  , such that                                   

                                                     U=V ⊗"W = Vik Wjl ei⊗ej⊗ek⊗el                                     									    									(1) 

where, the symbol “⊗” designates tensor product operation, and #! are orthonormal base vectors. 
The Cauchy stress tensor, σ, can be expressed by using the eigen-space, as	 

                                                               σ= &σ(a)q(a)⊗q(a)                                                                       (2)
3

a=1

 

where qa are the designated eigen-vectors associated with eigen-values %". A positive second-
order spectral tensor operator, Q+ is defined as         

Q
+
= &H(σa)q(a)⊗q(a)

3

a=1

                              			                               (3) 

where H (·) is the Heaviside function.  The cross-composition of the tensor Q+by itself yields a 
fourth-order tensor operator, &# =	Q+ 	⊗	"  Q+	such that when operated on the stress tensor, it 
transforms the stress tensor to its positive cone by removing the negative eigen-values; that is   

                                                                       σ+= P
+
: σ                 																		                                               (4) 

This elaborate, yet simple, mathematical operation allows for the development of anisotropic 
damage models as will be shown in the sequel. 

In the stress-space formulation, the Gibbs Free Energy function, G(σ,	C), is used where C is 
the current compliance of the material and changes as damage evolves.  Defining the cumulative 
damage parameter as k, the current compliance tensor is expressed as C(k)=C0+Cc(k) where, C0 
is the undamaged flexibility and Cc reflects the added flexibility due to damage. Clausius-Duhem 
inequality in the stress space yields that 

dG(σ, C)-dσ : ε ≥0                                                                       (5) 
where, * is the strain tensor, the differential symbol “,” denotes changes in G and σ, and  “: ” 
denotes a tensor contraction operation.  The standard thermodynamics argument produces two 
results that 

ε= 
∂G
∂σ

  and  
∂G
∂C
∷dC ≥ 0                 						                                              (6) 

where, the first term identifies the Gibbs Free Energy as a thermodynamics potential function for 
the strain tensor and “ ∷ ”	 is the double contraction operation. Since C0 is not a function of 
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damage; therefore dC(k)=dCc(k). With this, the second term of Eq. (6) yields the dissipation 
inequality as (Lubliner 1972)  

                                           ds= 
∂G

∂k
dk≥0                                                                             (7) 

Damage evolution rules are needed next to capture the effect of cracking on the mechanical 
properties of brittle solids.  To accomplish this we first define a fourth-order tensor, R, such 
that dCc=dk R.  Different response tensors R would define different damage model. The 
following forms of R is studied below: 

                                                               R= 
σ+⊗σ+

σ+:σ+                                                                               (8) 

                                                        R= 
σ+⊗σ+

σ+:σ+ + γ ( I-i ⊗i)                                                                  (9) 

                                                             R= qi ⊗qj⊗ qk⊗ql            	                                                      (10) 

                                                       R=I= δikδjl ei ⊗ej⊗ek⊗el         			                                                 (11) 

where, γ is a material parameter,  q, 0qiqi=1 identifies the direction of maximum tensile stress, 
the fourth-order identity tensor is denoted by I,  and i represents the second-order identity tensor. 
 
3 DAMAGE CRITERION AND STRAIN COMPONENTS 
To progress further, a damage criterion is needed.  With an assumption that damage is 
irreversible, a general form of a damage potential can be obtained as  

                                        ψ (σ,k)= 
1

2
σ :R : σ-

1

2
 t2 (σ,k)=0                 									                                    (12) 

where, the function, t(σ, k), is identified as the damage function to be determined from 
experimental data from some load path. The damage potential (surface) encompasses an elastic 
domain in the stress space where when ψ (σ,k) <0, the response is elastic.  The condition ψ 
(σ,k)=0 constitutes the necessary condition for the onset of material inelasticity, and the 
condition ψ (σ,k) >0 is not permitted for rate-independent processes.  The loading-unloading 
statement can then be made using the standard Kuhn-Tucker form as:   

                                                      ψ ≤0 , dk≥0    dkψ=0                                                                    (13) 

where, the set of equations given above must be satisfied simultaneously for all admissible 
processes.  The strain components of the deformation are obtained from Eq. (6) such that 

ε= 
∂G

∂σ =C(k) : σ                                                                      (14) 

which represents a set of non-linear equations as the compliance, C, evolves with damage.  The 
deformations given in the constitutive relations of Eq. (14) are termed “elastic-damage” processes 
as no permanent deformation is predicted.  Permanent strains are observed in brittle-fracturing 
processes due to misfit of cracks surfaces, process-zones, etc. but are excluded from consideration 
in this paper in order to better compare the predictions of isotropic and anisotropic damage 
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models.  To obtain strains, the differential form of Eq. (14) must be used and integrated to arrive 
at the total strain components. It follows that  

                                     dε=dεe+dεD=C(k) :dσ+dCc
: σ                                                  (15) 

in which dεe= C(k) :dσ is the incremental elastic strain tensor, and dεD=dCc(k): σ denotes 
incremental damage strains.  The form of the damage function used in this paper is obtained from 
the experimental works of Gopalaratnam and Shah (1985) and proposed by Ortiz (1985) as 

                                                             t(k)=ft
e ln⁡(1+E0k)

1+ Eok
                                                                (16) 

where 1$ denotes the uniaxial strength of a brittle solid, E0 is the initial elastic modulus, and “e” is 
the natural number.  
 
4 EXAMPLES 
The damage function, t, is plotted in Figure 1 against the damage parameter k. Both axes are 
normalized for a simpler presentation.  The constant k* is given as k* = (e-1)/E0 that corresponds 
to the maximum of the function “t”.  The form of smooth and differentiable function presented by 
Eq. (16) is preferred in numerical simulations where no sharp corner conditions are present.  
Sharp corners have been reported to cause singularities in computational schemes or lead to snap 
back issues in constitutive algorithms (Cope et al. 2005). 

 

 
 

Figure 1.  Normalized damage function. 

 
Utilizing the differential forms of strain components in Eq. (15), together with the damage 

criterion of Eq. (12) and using different response tensors, R, given in Eq. (8-11), we can obtain 
the stress-strain relationship for any load paths.  Figures 2 and 3 show the predicted stress-strain 
behavior for axial and lateral strains for equal-biaxial tensile stress path.  The uniaxial behavior is 
also plotted in Figure 2 along with experimental result for comparison.  Several points are noted.  
For one, with the exception of using Eq. (10), the other models predict that under a biaxial tensile 
loading path, the ultimate strength is lower than the uniaxial strength.  This observation is 
consistent with the experimental results reported elsewhere.  To capture the deformational 
characteristics better, more detailed response tensor along with inelastic damage strain involving 
kinematic material parameters are required which is beyond the scope of this paper.  Nonetheless, 
it can be seen that the salient features of concrete material inelasticity are captured even with 
simple damage and flow rules that are considered here. 

The apparent Poisson’s ratio is also known to change during the process of micro-cracking.  
This leads to observed dilatation when one studies the volumetric strains versus pressure 
response.  Of the four damage response tensors studied in this paper, only the relation shown in 
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Eq. (9) correctly models this behavior.  The other three response tensors do not model any 
inelastic changes in the lateral direction.  For the numerical solutions reported here the following 
material parameters were used: E0 = 4600 ksi (32000 MPa), ν = 0.20; γ = 0.1, and ft = 500 psi 
(3.45 MPa). 

 

 

Figure 2.  Normalized uniaxial and equal biaxial stress-strain curves by Eq. (9). 

 

  

Figure 3.  Normalized equal biaxial stress-strain curves.   

 
Other aspects of interest in the formulation to mention are the changes in the elastic moduli in 

the three orthogonal principal directions for axial and equal biaxial stress paths.  The variation of 
the elastic modulus in the direction of loading for the uniaxial stress path is shown in Figure 4.  
The figure shows a continuous degradation of the elastic modulus as damage increases.  This 
behavior is supported experimentally when cyclic loading-unloading is performed.  Denoting E = 
C-1 as the Elasticity tensor, the changes in the components of the compliance tensor C is worthy 
of discussion at this point.  For equal bi-axial load path, the anisotropic damage rules of Eq. (8) 
and (9) predict equal changes in components Cc

1111 and Cc
2222 and zero damage accumulation in 

Cc
3333.  The damage rule given by Eq. (10) assumes added flexibility in the component Cc

1111 and 
zero damages in components Cc

2222 or Cc
3333.  The isotropic damage formulation of Eq. (11) 

predicts damage in all three directions affecting Cc
 1111, Cc

 2222, and Cc
3333 components, equally.  

This could only happen if damage remains isotropic as is sometimes the case under blast loading 
conditions.  

 

Experiment 
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Figure 4.  Variation of modulus of elasticity with damage. 

 
5 CONCLUSION 
A general damage mechanics theory was laid out in this paper for small, isotropic, and rate-
independent processes for brittle solids in general and concrete in particular.  The effects of four 
different damage response tensors were examined on the stress-strain relations and on the 
changes in the components of the flexibility tensor.  It was shown that even though the four 
damage models would predict similar results in the direction of the loading, only one of the 
models considered here could predict the changes in the apparent Poisson’s ratio.  The effect of 
accumulated damage on the components of compliance, and hence the Elasticity, was also 
discussed.  Of the models studied in this paper, only the isotropic formulation would lead to 
isotropic state even after damage, while the other three damage rules would simulate anisotropic 
processes.  The permanent deformation was not studied in this paper but its inclusion is straight-
forward and could be found elsewhere (Yazdani 1993, Yazdani and Karnawat 1996). 
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