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This paper presents new probabilistic models intended for use with reliability methods 
for computing seismic risk on the component scale.  In the present context, risk is 
defined as the probability of attaining or exceeding a specific level of monetary loss.  
The models are classified as explicit story-specific demand model and consequence 
models.  The demand model predict maximum drift at the level of each story of low-
rise to mid-rise steel moment resisting frames (SMRFs) and, consequence models 
estimate repair cost of some fragility groups in a building.  A linear function of spectral 
acceleration at fundamental period in logarithmic space is considered for demand 
model.  The demand model is coupled with a set of relations to explicitly estimate 
unknown statistical characteristics of the probabilistic demand model parameters.  The 
consequence models are also formulated as a polynomial function respect to 
Engineering Demand Parameter in logarithmic space.  Bayesian regression technique is 
employed to determine probability distribution of the consequence models parameters.  
Finally, as an application of the proposed models, seismic loss curve of an example 
building is developed for earthquake intensities.  

Keywords: Earthquake, Uncertainty, Probabilistic, Reliability, Loss, Probabilistic 
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1 INTRODUCTION  

Performance-Based Earthquake Engineering (PBEE), which is known as cornerstone of 

the modern earthquake engineering, tries to estimate the performance of structures over 

the full range of the probable structural response, from elastic to global instability 

against a likely range of ground-motion excitations.  Performance has been introduced 

in various forms in literatures, but one of the most sophisticated forms is to be defined 

as an environmental, economical and societal consequence measure.  This definition 

provides a framework which makes it possible to answer the question “how safe is 

safe?”  Indeed, it implies making decisions that balance construction cost and safety, 

instead of only calibrating performance against what is deemed acceptable in the past.  

Generally, there are two different formulations for above definition.  The first 

formulation referred to as Pacific Earthquake Engineering Research (PEER) center 

methodology employs total probability theorem as the basis to quantify building 

performance in terms of a decision variable (Cornell et al. 2000).  The second method 

adopted reliability analysis as a foundation on which performance assessment can be 
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based (Haukaas 2008).  Since the essence of both methods is the probability concept, 

the assessment outcome, the probability a specific loss threshold occurs, could be the 

basis for decision maker involved in the investment and construction sector.  However, 

authors believe that reliability framework has some interesting characteristics making it 

appealing for practical purposes.  The main characteristics are: (1) The ability to 

explicitly yet effortlessly address uncertainties arise from randomness and lack of 

knowledge, (2) Reliability methods, especially gradient based methods, are tailor to 

compute probability on the tail of loss curve, where the probability is low but loss is 

high.  Therefore, in this study, attention is directed towards reliability based approach.  

In a classical structural reliability analysis, the failure probability of a single component 

is evaluated by the integral (Haldar et al. 2000):  
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Where fP  is the failure probability, 1 2( , ,.... )nX X X X is the vector of random  

variables, ( )Xf x is the joint probability density function (PDF) of X  and ( )g  is a limit-

state function that defines the performance event for which the probability is being 

assessed.  Although the probability integration, i.e.  Eq. (1), cannot be solved 

analytically, several reliability methods are introduced to numerically estimate the 

probability integration, including First/Second Order Reliability Method (FORM and 

SORM) and sampling technique.  The foundation of these methods is based on 

simulating out-come space by computing the value of limit-state function for each 

realization of random variables.  It must be considered that the required number of 

realizations depends on the applied reliability method.  However in comparison to 

simulation techniques, the gradient-based methods (FORM/SORM) require remarkably 

less realizations.  According to the above brief description, if reliability methods are 

intended to be implemented in a seismic risk assessment study, either with simulation or 

gradient-based techniques, limit-state function addressing the desired failure event 

should be defined first.  In this paper, the following general folded limit-state function 

as the mean to address the problem of seismic risk prediction on the component scale is 

discussed and proposed for steel moment frames: 

 

g( ) = dv - ∑DV(θdv, EDP(θd, IM))                                               (2) 

 

Where DV is a decision variable in the form of repair cost, dv is a threshold introduced 

by analyst for a target performance, EDP is an engineering demand parameter,  is a 

vector of a model parameters, and IM is a random variable which reflects uncertainties 

embedded in seismic excitations and known as the earthquake intensity measure in 

literatures.  To complete limit-state function in the form of Eq. (2), it needs developing 

modularized demand and consequence models.  A modularized model can takes input 

from upstream model and/or return desired output to downstream models.  According to 

above discussion, the main objective of the present study would be summarized to serve 

new probabilistic demand and consequence models to be employed in the codified and 

practical seismic risk evaluations.  All these models are developed using Bayesian 
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inference to explicitly consider statistical uncertainty, arising due to use of finite-size 

sample population, as well as aleatory uncertainty. 

 

2 PROBABILISTIC STORY-DRIFT MODELS 

Probabilistic drift demand models are specifically developed for a typical structure 

based on data obtained from numerous nonlinear response history analyses and/or 

experimental tests, when seismic vulnerability assessment is performed.  Although, this 

methodology can be acceptable for research papers, it is not appealing for practical 

purpose because of its computational cost.  Thus, in this paper, generic story-specific 

demand model with linear formulation in logarithmic space is proposed to predict 

maximum drift demand for each story of the low-rise to mid-rise multi-story steel 

moment resisting frames.  Developing demand model in the logarithmic space 

approximately satisfies the normality (i.e., model error has normal distribution) and 

homoscedasticity assumptions (i.e., Standard deviation of model error is constant).  Eq. 

(3) exhibits general form of story-drift demand model developed in the present study 
 

Ln[D(Sa(T1),θ)] = a + bLn(Sa(T1)) + σϨ                                            (3) 
 

Where Ln[D(Sa(T1),θ)] is a response that the model predicts and equal to natural 

logarithm of the maximum story drift, θ = (a, b, σ) is a vector of unknown normal 

parameters and (Sa(T1)) is spectral acceleration at fundamental period reflecting 

uncertainties in seismic excitation and defined in terms of gravity coefficient g.  In 

addition, Eq. (3) is linked with a set of relations in terms of building characteristics to 

compute unknown statistical characteristics of the model parameters.  In the following, 

because of limitation put on the number of pages, only those relations applied to 

compute mean and standard deviation of the model parameter a  is presented.  

Although, a full set of relations would be available upon request through authors email 

address.  In developing these relations, a comprehensive structural data based is 

established by performing Incremental Dynamic Analysis (IDA) on 81 generic moment 

resisting frames under 82 suitably multiply-scaled ground motion records.  The concept 

of generic moment frame is not new, and has been utilized by various researchers to 

evaluate seismic performance of moment resisting frames (Ruiz-Garcia et al. 2010, 

Medina et al. 2004, Chintanapakdee et al.  2003, Esteva et al. 1989, Zareian et al.  

2006).  Thus, in the present study, a family of three-bay generic moment frames, the 

details of such a family of generic moment frames are presented in Zareian et al. 

(2006), is implemented to simulate story-drift of steel moment resisting frames 

(SMRFs). 
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Where T is structural fundamental period determined in accordance with ASCE-7-10, 

Section 12.8.2 (i.e. u aC T ), N  denotes number of stories, and _ST Num represents story 

number.  CY indicates yield base shear coefficient and equals Vy/W, where W represents 

effective seismic weight and Vy is yield base shear strength.  Vy may be obtained from 

pushover analysis or estimated by multiplying design value of the seismic base shear by 

over-strength factor.  Moreover, SSD is a numerical index for beam stiffness and 

strength distributions over the height of structure and varies from 1 to 3.  In this paper, 

based on interpolation technique and averaging over the height, following equation is 

suggested to calculate SSD value: 
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Where I indicates beam moment of inertia and V represents story shear when subjected 

to ASCE-7-10 lateral load pattern. i and 1 indicate specific story and the first story 

respectively.  Table 1 shows posterior statistics of the unknown parameters α1 of Eq. (4) 

to Eq. (5). 

 
Table 1.  Posterior statistics of the unknown model parameters. 

  1  2  3  
4  5    

a  Mean 7.05E-01 -3.33E-01 2.23E-02 -5.62E+00 -4.39E-01 2.77E-01 
Standard deviation 7.12E-02 7.10E-03 1.23E-03 8.01E-02 1.15E-02 8.96E-03 

a  Mean 2.76E-03 4.12E-04 6.16E-03 2.77E-02 -1.45E-04 2.73E-03 
Standard deviation 1.60E-04 5.56E-05 3.00E-04 1.34E-03 2.07E-05 8.84E-05 

 

Of course, for simplicity, someone can pass up epistemic uncertainty on the proposed 

relations.  To this end, only mean value of the coefficients of the relations requires to be 

considered.  Otherwise, one can suppose normal marginal distribution for α1 to reflect 

epistemic uncertainty on the proposed relations.  This assumption is supported with the 

fact that t-distribution asymptotically approaches a normal distribution when the 

number of data is large.  With these equations, story-specific demand models can be 

directly developed for a designated SMRF.  For this purpose, it is only required 

defining demand models in the form of Eq. (3).  Then, unknown statistical 

characteristics of the model parameters are calculated using proposed relations. 

 

3 CONSEQUENCE MODELS 

In this part of the study the probabilistic consequence models are developed to describe 

relation between structural demand parameters, i.e., the maximum drift at the level of 

each story, and unit repair cost of 25 fragility groups of a building.  To develop 

consequence model for each component, a comprehensive database should be initially 

developed.  In generation of such a database, fragility models with cost functions 

presented in FEMA P-58 (FEMA 2012) are used.  A simulation based- procedure is 

applied to develop database.  This method is a three-stage process that starts by random 
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generation of structural demand.  Next, for a given structural demand and using fragility 

model introduced in FEMA (2012), the probability that the component is in a specific 

damage-state for a given value of demand parameter  |iP DS D  is computed as:  

                                      1| | |i i iP DS D F DS D F DS D                                7  

Where F (DSi | D) represents the probability that damage to the component exceeds ith 

damage-state for a given demand parameter.  Then, for a given damage-state, a repair 

cost value is randomly produced with consideration of uncertainty in the cost data 

proposed in FEMA (2012).  The generated cost-value multiplies by the probability 

obtained in the second stage.  This step is repeated for all damage-states considered for 

the component and the results are summed to compute total repair cost for a given 

structural demand.  It is noted that the cost values presented in FEMA (2012) are valid 

for California in 2011.  Thus, to keep the generality of the consequence models, a non-

dimensional quantity  is suggested to be used instead of repair cost in consequence 

models.  This quantity is defined as the ratio of obtained total repair cost to the mean 

value of repair cost for the most severe damage state defined for the component.  

According to developed database, a fourth-order polynomial function respect to demand 

parameter is suggested to express consequence models.  Similar to story-specific 

demand models, consequence models are also developed in logarithmic space to satisfy 

normality and homoscedasticity assumption. 
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 Once the initial model has been developed, a stepwise deletion procedure proposed 

in Gardoni (2002) is employed to reduce number of terms in the models to compromise 

between model simplicity and model accuracy.  For an example, in the following the 

Post-Northridge steel connection is presented. 

2

1 1 1

3

1

( ) (0.8753 4.895) ( ) (0.24687 3.5286) ( )

(0.02245 0.6332) ( ) .

Ln Ln D Ln D

Ln D

   

  

    

  
     

 9

 

The integration of these two classes of proposed models in the form of Eq. (2) 

presents a closed-form generic limit state function which is continuously differentiable.  

Hence, the limit state function could be specifically intended for use with First Order 

Reliability Method (FORM) to compute seismic risk probability.  This makes the run-

time requires drawing a loss curve out dramatically reduce.  In fact, the main vision 

behind this paper is to balance between accuracy and computational cost of a seismic 

risk analysis which could be appealing for practical purposes.  As an application of the 

proposed model, seismic risk analysis for an example building was done at earthquake 

intensity equals 1.0g.  The example building is a four story-building designed with 

respect to American Institute of Steel Construction (AISC) specifications and satisfies 

all seismic requirements of ASCE-7-10.  For simplicity, only Post-Northridge steel 

connection is considered as a fragility group in the seismic loss.  Fig (1) demonstrates 

loss curve of the example building. 
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Table 2.  Posterior statistics of the consequence models parameters. 

 
 

1    

Mean 9.622E+00 2.539E-01 

Standard Deviation 2.872E-02 2.000E-04 

 

 
 

Figure 1.  Loss curves of the example building at different hazard levels. 
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