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This paper is aimed to develop a design procedure of Polynomial Friction Pendulum 
Isolator (PFPI), a various-frequency sliding isolator, for decreasing the seismic 
responses of isolated bridges.  Although sliding isolators have been widely used to 
mitigate seismic hazard, it may be not effective in decreasing the seismic responses of 
isolated structures subjected to near-field ground motions.  The sliding surface of the 
PFPI is defined by a sixth-order polynomial function to avoid resonance under near-
field ground motions.  The restoring stiffness of the PFPI possesses softening section as 
well as hardening section.  The structural acceleration response can be decreased by 
decreasing the restoring stiffness in softening section while the structural displacement 
response can be decreased by increasing the restoring stiffness in hardening section.  
However, it is difficult to determine the design parameters of PFPI in practical 
implementations.  This study proposes a design procedure for the PFPI based on the 
bridge seismic design code in Taiwan.  Designers can follow this procedure to easily 
design the bridge with PFPIs which satisfies the requirements of the code.  The bridge 
with PFPIs designed by using this procedure is analyzed to realize the dynamic 
nonlinear responses of the bridge under artificial strong earthquake.  The results show 
that the PFPIs effectively decrease the seismic responses of isolated bridges as 
compared with non-isolated bridges. 

Keywords: Isolated bridge, Various-frequency sliding isolator, Seismic design, 
Dynamic response,  Near-field ground motion.   

 
 
1 INTRODUCTION 

The seismic isolation with sliding bearings has been shown to be effective in protecting 
structures from earthquakes.  The friction pendulum system (FPS) is currently one of 
widely-used sliding isolators.  However, the fundamental vibration period of the 
structure with FPS isolators is elongated to a specific value due to the spherical sliding 
surface of FPS isolators.  A resonant problem may occur when the structure with FPS 
isolators is subjected to a ground motion containing low-frequency components, such as 
a near-field earthquake (Lu et al.  2011).  In order to avoid resonance and improve the 
performance of a sliding isolation system, a Polynomial Friction Pendulum Isolators 
(PFPI) is adopted in this study to design isolated bridges.  The PFPI is similar to the 
traditional FPS, except that the geometry of its concaved sliding surface is defined by a 
sixth-order polynomial function rather than a spherical function.  Therefore, the 
fundamental frequency of the structure with PFPIs continuously varies during vibration.  
In the past studies, PFPIs are proven to be capable of effectively mitigating the seismic 
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responses of isolated structures under near-field ground motions.  Since the design 
parameters of PFPIs are more than those of traditional FPS isolators, it is difficult to 
determine the design parameters of PFPIs in practical implementations.  This study 
proposes a design procedure for the PFPI based on the bridge seismic design code in 
Taiwan.  Designers can follow this procedure to easily design the bridge with PFPIs 
which satisfies the requirements of the code. 
 
2 POLYNOMIAL FRICTION PENDULUM ISOLATOR 

Similar to a FPS isolator, a PFPI is mainly composed of a concaved sliding surface and 
a slider as shown in Figure 1.  The slider slips on the sliding surface during earthquakes.  
The sliding surface is generally designed to be concaved and axially symmetric.  As 
depicted in Figure 1, the cross-section of the sliding surface of the isolator can be 
expressed by a geometric function y(x) in an x-y coordinate where y is the elevation of 
the sliding surface while x is the horizontal displacement of the slider.  There are four 
forces acting on the slider including the vertical load applied on the slider, P, the 
normal contact force, N, the slider friction force, fF  and the horizontal shear force, U.  
The force U is induced by the relative horizontal motion between the superstructure and 
substructure.  Lu et al. (2011) has derived the following equation to compute the 
horizontal shear force, U, 

 ( )  ( )  ( )r fU x u x u x    (1) 

where ( )ru x  and ( )fu x  represent the restoring force and the friction force, respectively.  
Assuming the isolator is in its sliding state and the slope and frictional coefficient of the 
sliding surface is much smaller than one, these forces can be written as 

 ( )ru P y x   (2) 

 sgn( )fu x P    (3) 

where   denotes the friction coefficient between the slider and surface; sgn( )x  means 
taking the sign of x . 

The PFPI isolator stiffness can be defined in two different approaches.  One is the 
tangent stiffness, ( )tk x .  The other is the secant stiffness, ( )k x .  They are defined as  
                                          
 
 
 
 
 
 
 
 
 
                                                                         
 Figure 2.  The restoring force vs.  

displacement of a PFPI. 
Figure 1.  Force components applied 

on the slider of a PFPI isolator. 
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x x


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The restoring force and stiffnesses of the PFPI system depend on the geometric 
function ( )y x  of the sliding surface as shown in Eqs. (2), (4), and (5).  Therefore, the 
demanded mechanical property of the isolator can be realized by choosing the proper 
function ( )y x .  To satisfy multiple objectives in seismic design, this study defines the 
geometric function by the following sixth-order polynomial. 

 6 4 21 1 1
( )

6 4 2
y x ax cx ex     (6) 

where a, c, e are three constant coefficients to be determined.  Taking the first 
derivative of Eq. (6) and then substituting it into Eq. (2) yields the restoring force of the 
PFPI as 

 5 3( )
( ) ( )r

r

u x
u x y x ax cx ex

P
       (7) 

where the restoring force in Eq. (6) has been normalized with respect to the vertical 
load P.  ( ) ( )ru x y x  is also called the normalized restoring force.  Likewise, the 

normalized isolator stiffness ( )k x  can be obtained as 

   4 2( ) ( )
( ) rk x y x

k x ax cx e
P P


       (8) 

The normalized restoring force ( )ru x of the PFPI defined by the fifth-order 
polynomial in Eq. (7) is an anti-symmetry curve as shown in Figure 2.  The curve has 
three inflection points.  One of the inflection points must be located at the origin; while 
the other two points are determined by the three polynomial coefficients a, c and e in 
Eq. (7).  By properly choosing the values of the three coefficients a, c and e the 
restoring-force function ( )y x  of the PFPI will possess a softening section followed by a 
hardening section as shown in Figure 2.  In the softening section, the isolator stiffness is 
decreased while the stiffness is increased in the hardening section.  The purpose of the 
softening section is to mitigate the acceleration response for an earthquake below the 
design level while the purpose of the hardening section is to reduce the isolator drift for 
an extreme earthquake beyond the design level. 

Since the three coefficients a, c, e in Eq. (7) are purely mathematical, such 
coefficients are converted into other parameters having more engineering meaning (Lu 
et al. 2013).  In Taiwan highway bridge seismic design code, two-level earthquakes 
shall be considered, including maximum design earthquake (MDE) and maximum 
considered earthquake (MCE).  Assume 1D  and 2D  are the maximum displacements of 
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the isolator under MDE and MCE, respectively.  Let 1k  and 2k  be the isolator’s secant 
stiffnesses at two isolator displacements 1D  and 2D , respectively; while 0k  be the 
tangent stiffness at the origin.  Applying the three assumptions into Eq. (7), the three 
coefficients a, c, e can be written as 

 
2

2 1 1 0 2 0
2 2 2
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
 ;  0e k  (9) 

 
3 DESIGN PROCEDURE OF ISOLATED BRIDGE WITH PFPIS 

Lu et al. (2013) has proposed a conceptual design for the PFPIs.  In this paper, a design 
procedure of isolated bridges using PFPIs is proposed based on Taiwan highway bridge 
seismic design code.  Firstly, bridge engineers determine the maximum deck 
displacement D

dD  and M
dD  under MDE and MCE, respectively, according to the 

expected performance of bridges and practical limitations.  Then the following 
procedures are provided to design the isolators to meet the provisions in the code. 
 
3.1    Design in Maximum Design Earthquake  

In general, isolators are installed between deck and substructure, effective periods of 
seismically isolated structure are used to accommodate both the stiffnesses of the 
substructure and isolators.  Compared to the period of non-isolated bridges, the period 
of isolated bridges are much longer and in the region far from the constant design 
spectral acceleration plateau to reduce the seismic-induced force.  Assume the period of 
the isolated bridge is D

effT  as   

   0
D

eff D DT r T   (10) 

where 0DT  is the period at the end of constant design spectral acceleration plateau for 
MDE.  Dr  is a magnification factor and should be larger than one.  Then the effective 
stiffness D

effk  of all isolators and substructures at displacement 1D  for the isolators and 
displacement of D

subD  for the substructure can be calculated. 

   
24 ( )D d sub

eff D
eff

m m
k

T

 
   (11) 

where dm  is the mass of the deck and  subm  is the mass of the substructures. 
If the stiffness of the substructures is subk  , the stiffness and displacement of the 

isolators, 1k  and 1D , respectively, can be calculated as  

   1 ( )

D
eff sub

D
sub eff

k k
k

k k



,  1

1

1

D
D d

d

sub

k D
D D

k k
 


 (12) 

The maximum isolator shearing force 1V  can be calculated by multiplying 1k  by 1D .  
If the 1V  is larger than expected, go back to increase the period of the isolated bridge, 
d

effT , and then recalculate the 1k  and 1D  of the isolators.  Next step is to calculate the 
equivalent viscous damping ratio for the isolators, 1 . 
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2
tQ D

k D



  (13) 

where tQ  is the characteristic strength of the isolator as shown in Figure 3.  If 1  is 

larger than 5%, the equivalent viscous damping of the isolated bridge, D
eff , must be 

calculated, which is not shown herein.  Consequently, the maximum deck displacement 
D

dD  is checked by using the following calculation. 

   
2

24

D
aD effD

d

S T g
D


  (14) 

where aDS  is the spectral acceleration of the isolated bridge under MDE.  g is the 

acceleration of gravity.  If the difference between the assumed D
dD  and calculated D

dD  
is larger than the tolerance, it is required to reprocess the design procedure. 
 
3.2    Design in Maximum Considered Earthquake  

Since it is intended to decrease the isolator displacement under maximum considered 
earthquake, the hardening section of the PFPI’s restoring properties is utilized to design 
the isolated bridge.  The effective stiffness of the isolator, 2k , at displacement 2D  under 
MCE should be larger than the stiffness 1k  under MDE.  Assume the stiffness 2k  to be 
1.0-sec. period under MDE and MCE, respectively. 

   1
2 1

1

M

D

S
k k

S
   (15) 

The displacement 2D  can be calculated by the second equation of Eq. (12).  
Referring to the first equation of Eq. (12), the effective stiffness M

effk  of the isolated 
bridge can be determined.  Then the period of the isolated bridge, D

effT , is calculated by 
the known masses and stiffnesses.  Following the same design procedure in MDE by 
replacing aDS  by aMS , one can finally determine the 2k  and 2D  of the isolators. 
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Figure 3.  Enclosed area of one-cycle 
hysteresis loop of a PFPI. 

Figure 4.  Deck displacement of non-isolated and 
isolated bridge. 
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4 DESIGN EXAMPLE AND RESULTS 

A typical five-span continuous isolated bridge is designed by using PFPIs.  A column 
with the effective deck mass on the top can be taken apart as a unit for design with its 
properties: deck mass 600 ton, column mass 243 ton, column lateral stiffness 112.7 
MN/m, structure damping ratio 5%.  Assume D

dD  and M
dD  are 0.15 m and 0.22 m, 

respectively.  Choose Dr  to be 2.0 and 0k  to be the same as 1k .  Based on the above 
design procedure, the displacements 1D  and 2D  of the PFPIs are 0.110 m and 0.147 m, 
respectively, while the corresponding effective stiffnesses 1k  and 2k  are 32.4 MN/m 
and 41.9 MN/m, respectively. 

The seismic performance of the designed isolated bridge is checked by using 
structural dynamic analysis.  The input ground motion is an artificial excitation whose 
response spectral accelerations are almost identical to the design spectrum in the code.  
Figures 4 and 5 presents the comparison of the deck displacements and the column 
hysteresis loops between non-isolated bridge and isolated bridge.  Also the hysteresis 
loop of the PFPIs is shown in Figure 6.  It can be observed that the seismic performance 
of the isolated bridge with the PFPIs has improved satisfactorily. 
 
5 CONCLUSIONS 

A design procedure for the PFPI based on the bridge seismic design code in Taiwan is 
proposed in this study.  Bridge engineers can follow this procedure to easily design the 
bridge with PFPIs which satisfies the requirements of the seismic code.  A practical 
typical isolated bridge is designed by using PFPIs with application of this procedure.  
This isolated bridge is analyzed under artificial strong ground motion.  The results show 
that the PFPIs effectively decrease the seismic responses of isolated bridges as 
compared with non-isolated bridges. 
 
References 

Lu, L.Y., Lee, T.Y., and Yeh, S.W., Theory and Experimental Study for Sliding Isolators with 
Variable Curvature, Earthquake Engineering & Structural Dynamics, 40(14), 1609-27, 
2011.   

Lu, L.Y., Lee, T.Y., Juang, S.Y., and Yeh, S.W., Polynomial Friction Pendulum Isolators (PFPIs) 
for Building Floor Isolation: An Experimental and Theoretical Study, Engineering 
Structures, 56, 970-982, 2013. 

Figure 5.   Hysteresis loop of column of non-
isolated and isolated bridge. 

Figure 6.   Hysteresis loop of the PFPI. 


