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DYNAMIC ANALYSIS OF BRIDGES WITH 
PLASTIC HINGES UNDER EXTREME 
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National Central University, Taoyuan County, Taiwan  
 

This study is aimed to develop the model of fiber element in the Vector Form Intrinsic 
Finite Element (VFIFE) to analyze the plastic hinges of reinforced-concrete columns 
for bridges subjected to extreme earthquakes.  The VFIFE, a new computational 
method, is adopted in this study because of the superior in managing the engineering 
problems with material nonlinearity, discontinuity, large deformation and arbitrary 
rigid body motions of deformable bodies.  In the past study, a plastic hinge is idealized 
as a bilinear elastoplastic model with a fracture moment.  In order to analyze the 
realistic behavior of the plastic hinge, especially in ultimate state, the fiber element is 
developed to simulate the plastic hinge by using stress-strain relations in cover 
concrete, core concrete and steel fibers.  The developed fiber element is verified to be 
feasible and accurate through numerical simulation.  A three-span-continuous isolated 
bridge is analyzed to investigate the function of the columns and unseating prevention 
devices and to predict the collapse situation of the whole bridge.  In addition, the 
analysis results are compared between the fiber element and bilinear elastoplastic 
element. 
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1 INTRODUCTION 

Nonlinear dynamic analysis of structural models has been extensively used to assess the 
seismic performance of existing structures and then to determine appropriate retrofit 
strategies.  Nowadays a number of modelling strategies have been developed for the 
study of the global, regional and local hysteretic response of buildings and bridges 
under strong ground motions.  Since the inelastic behaviour of reinforced concrete (RC) 
structures often concentrates at the ends of girders and columns, an early approach to 
model this behaviour was by means of non-linear springs located at the member ends.  
However, there are some limitations in lumped plasticity constitutive models to 
simulate the hysteresis behavior of RC structures more precisely (Charney and Bertero 
1982, Bertero et al. 1984). 

This study is intended to develop the fiber element model proposed by Spacone  
et al. (1996) in Vector Form Intrinsic Finite Element (VFIFE) method to analyze the 
plastic hinges of reinforced-concrete columns for bridges subjected to extreme 
earthquakes.  A three-span-continuous isolated bridge is analyzed to investigate the 
plastic hinges of the columns and the function of unseating prevention devices, finally 
to predict the collapse situation of the whole bridge. 
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2 VECTOR FORM INTRINSIC FINITE ELEMENT 

The Vector Form Intrinsic Finite Element is developed based on theory of physics to 
simulate the failure responses of structural systems, in particular under seismic loading 
The first step in the VFIFE analysis is to construct a discrete model for a continuous 
structure by using a lumped-mass idealization.  It is noted that all lumped masses are 
connected by deformable elements without mass.  Then applying Newton’s Second 
Law of Motion, the equations of motion are established at each mass for all degrees of 
freedoms.  Assume that a structural system consists of a finite number of lumped 

masses.  A mass designated as   has a diagonal mass matrix M  and a displacement 

vector ( )td at time t .  The equations of motion for mass   are written as 

 ( ) ( ) ( )t t t    M d P f   (1) 

where P  are the applied forces or equivalent forces acting on this mass; f  are the 
total resisting forces or internal resultant forces exerted by all the elements connecting 
with this mass.  Note that each element without mass in the VFIFE is assumed to be in 
static equilibrium.  Observed from Eq. (1), it is not necessary to assemble the global 
stiffness matrix for structures with multiple degrees of freedom in the VFIFE analysis.  
A matrix algebraic operation for the entire system is waived.  Instead, each equation of 
motion for each particle, Eq. (1), can be individually solved.  Since the failure progress 
of structures involves changes in material properties and structural configuration, 
discrete time domain analysis is used to solve the equations of motion.  The central 
difference method, an explicit time integration method, is adopted to solve the 
equations of motion, Eq. (1).  Compared to the traditional finite elements, the feature of 
the VFIFE is that element internal forces are calculated by deformations of elements 
through subtracting rigid body motion from total displacements.  Therefore, a set of 
deformation coordinates are defined for each element in each time increment.  The 
VFIFE is capable of dealing with large displacements, deformations and rigid body 
motion simultaneously. 
 
3 FIBER ELEMENT MODEL  

A beam element without rigid body modes is shown in Figure 1 in the local coordinates 
xyz.  The element is divided into a number of discrete cross-sections.  The formulation 
of the beam element is based on the assumption of linear geometry.  During the history 
of element deformation, plane sections remain plane which is normal to the longitudinal 
axis. 

Figure 1 shows the fibers of the cross sections.  Each section is subdivided into n 
fibers, where n is a function of x to consider the variation of both cross-section 
dimensions and longitudinal reinforcements along the element. The section stiffness is 
determined by integrating the related properties of each fiber while the resisting force 
by integrating the corresponding stresses of each fiber.  Figure 2 shows the generalized 
element forces Q and the corresponding deformations q .  Also, the section forces D  

and corresponding deformations d  are shown in Figure 2.  The vector components of 
, , , Q q D d are written as below. 
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( )y x  and ( )z x denote the section curvature about y and z axes, respectively, and 

( )x  denotes the axial strain in the x direction.  On the assumptions mentioned above, 
the fiber strains can be obtained from the section deformations by using a simple 
geometric transformation matrix.  Since the member behaviour in torsion is assumed to 
remain linear elastic and uncoupled from the flexural and axial response, the element 
force and deformation vectors in Eqs. (2) and (3), respectively, do not include torsional 
force and deformation. 

The beam element is formulated by the two-field mixed method.  The matrix 
relation between element generalized forces and corresponding deformations is derived 
by using the integral form of equilibrium and section force-deformation relations.  The 
section force-deformation relation is linearized about the present state and an iterative 
algorithm is used to satisfy the non-linear section force-deformation relation within the 
required tolerance.  The detailed formulations and their derivations can be found in the 
related studies. 

 
4 NUMERICAL SIMULATION 

4.1     Target Bridge  

A three-span-continuous isolated bridge is analyzed, as shown in Figure 3 by using 
VFIFE with fiber elements.  The bridge has a five-span deck with a total length of  
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5@40 m=200 m and a width of 12 m, which is supported by four reinforced concrete 
columns with a height of 12.2 m in each and two abutments.  The columns are idealized 
by two different models.  One is a perfect elastoplastic model with a fracture ductility of 
21.5.  The other is a fiber element model with the material behavior of core concrete, 
cover concrete and steel proposed by Filippou et al. (1983) as shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
4.2     Ultimate State of Bridge 

The input ground motion in simulation was recorded at JMA Kobe, 1995.  Figure 5 
depicts the failure procedure of the continuous bridge adopting the bilinear springs to 
consider the plastic hinges under 290% of JMA Kobe ground motion, where the first 
characters B, C, D and R of the notions denote the isolators, column, deck and tendon, 
respectively.  First of all, the isolators B2-B4 fractured along the way perpendicular to 
bridge axis and also the tendons fractured.  Then the columns C1, C2, C3 and C4 
collapsed when it reached the ultimate ductility, which resulted in the unseating of 
decks D1, D2, D3 and D4.  Figure 6 depicts the failure procedure of the continuous 
bridge adopting the fiber elements to consider the plastic hinges under 290% of JMA 
Kobe ground motion.  Figure 7(a) shows the hysteretic loops of columns adopting 
bilinear springs.  Figure 7(b) shows the hysteretic loops of columns adopting fiber 
elements.  According to the analytical results, while the columns reached the ductility, 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Hysteretic stress-strain relation of (a) steel, (b) concrete. 
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Figure 3.  Five-spans continuous isolated bridge model. 
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the case adopting fiber element could still consider the resistant force applied by core 
concrete which prevented the superstructure of  bridge from unseating immediately.  
Therefore, utilizing the fiber element to simulate the plastic hinge of column is more 
accurate and closed to the real situation.  
 

 

 

 

 
Figure 5.  Failure process of the bridge adopting bilinear spring element under 290% of JMA 

Kobe records. 
 

 

 

 

 
Figure 6.  Failure process of the bridge adopting fiber element under 290% of JMA Kobe 

records. 
 

5 CONCLUSIONS 

 The fiber element is developed in VFIFE to simulate the hysteretic behaviour of 
column of isolated bridge under extreme earthquake successfully.  The fiber 
element developed in VFIFE is particularly suitable for the analysis of the 
highly non-linear hysteretic behaviour of softening members, such as reinforced 
concrete columns under extreme earthquakes. 

 Due to the material model considered in the fiber element, while the column 
reached the ductility, the superstructure of bridge would not collapse 
immediately.  Even the steels had fractured; the core concrete still applied the 
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resistant force for column.  Comparatively, the bilinear spring model in VFIFE 
would set the resistant force to be zero while the ductility was achieved that 
causing the unseating of deck to happen simultaneously. 

 Compared with the bilinear spring, adopting the fiber element to simulate the 
plastic hinges of columns could predict the non-linear behaviour of substructure 
of bridge more accurately.  The bilinear spring in VFIFE simulated the 
responses of column in three-dimensional model including axial force, shear, 
moment and torsion independently, however, the axial and rotational response 
are coupled.  

 

 

 

 

 

 

 

 

 
Figure 7.  Hysteretic loop of column C1 simulated by (a) bilinear spring element (b) fiber 

element. 
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