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The study of the dynamic response of rigid roadway pavements subjected to dynamic 
loads such as vehicle loads has received significant attention in recent years, because of 
the relevance to the design of pavements.  This paper presents an analytical solution 
based on the Modified Bolotin Method to analyze rigid pavements under moving traffic 
loads.  The concrete pavement is modelled as an orthotropic damped plate resting on a 
continuous elastic foundation, whereby at its edges it is partially fixed.  The natural 
frequencies of the system are computed from a system of two transcendental equations, 
obtained from the solution of two auxiliary Levy’s type problems.  The dynamic 
vehicle load is expressed as a concentrated load of harmonically varying magnitude, 
travelling with a variable speed along the rigid pavement.  A numerical example is 
given, demonstrating the applicability of the theory to rigid roadway pavements under 
actual loading conditions.  Therefore, it may be expected that this dynamic load 
approach may lead to more economic solutions as compared to those obtained from the 
conventional static load approach. 

Keywords:  Rigid roadway pavement, Modified Bolotin Method, Moving traffic loads,  
Continuous elastic foundation,  Auxiliary Levy’s type problem.   

 
  

1 INTRODUCTION  

The dynamic response of rigid roadway pavements to moving vehicle and aircraft loads 
had been the subject of numerous studies in recent years.  Although the importance of 
more accurate dynamic analysis of rigid pavements had been realized, analytical 
solutions were available for simple cases only, partly due to the mathematical 
complexity involved.  The simplest representation of a continuous elastic foundation 
had been provided by Winkler (Kerr 1964) who assumed the base consisting of closely 
spaced independent linear springs.  The Winkler model neglected the interconnection 
among the soil layers and as a result had imposed some serious limitations in the 
physical modeling of the sub-soil system.  This limitation could be improved by 
modelling the sub-grade as a two-parameter medium, which provided shear interaction 
between individual spring elements.  This type of continuous elastic foundation is 
called a Pasternak foundation.  Zaman et al. (1993) presented an analysis of rigid 
pavements resting on a two-parameter elastic medium subjected to a moving load.  In 
his work, the dynamic moving load was modelled as a spring-dashpot unit and the 
foundation system was modelled as a thin plate.  Later in 2010, Patil et al. (2010) 
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studied the dynamic analysis of a rigid pavement resting on a two-parameter soil 
medium.   
 
2 THE GOVERNING DIFFERENTIAL EQUATION OF MOTION 

In this research work, a rigid roadway pavement is modelled as an orthotropic 
homogenous elastic rectangular plate resting on an elastic Pasternak foundation.  
According to the classic theory of thin plates, the transverse deflection w(x,y,t) of the 
plate satisfies the partial differential equation: 
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where Dx is the plate flexural rigidity in the x direction, B is the plate torsional rigidity, 
Dy is the plate flexural rigidity in the y direction,  is the mass density, h is the plate 
thickness,  is the damping ratio, kf is the foundation stiffness coefficient, Gs is the shear 
modulus of the Pasternak foundation and p(x,y,t) is the dynamic load on the plate.  The 
traffic load p(x,y,t) is modelled as an equivalent concentrated load of harmonically 
varying magnitude moving in the x directional axis of the plate that can be expressed as 
follows: 
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where P0 is the maximum amplitude of the vehicle, v is the angular frequency of the 
vehicle, v0 is the constant speed of the vehicle, b is the length of the rigid pavement in 
the y direction.  Due to the use of dowels and tie bars to join the rigid roadway 
pavement, all four sides of the orthotropic plate have elastic vertical translational 
support as well as elastic rotational restraint along the sides.  Thus, the boundary 
conditions for each side of the plate are as follows: 
 

Elastic vertical support along x=0: 
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Elastic vertical support along x=a: 
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Elastic vertical support along y=0: 
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Elastic vertical support along y=b: 
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where Gxy is the shear modulus of the plate, ksx is the elastic vertical translation 
stiffness in x direction, ksy is the elastic vertical translation stiffness in y direction. 
 
3 NATURAL FREQUENCIES OF THE SYSTEM 

In order to solve the free vibration response of the problem described above, it is 
assumed that the principal elastic axes of the material are parallel to the plate edges and 
the free vibration solution of the problem is set as: 

tyxWtyxw sin),(),,(                      (7) 

where  is the circular frequency of the system and W(x,y) is a function of the position 
coordinates only.  Then substituting Eq. (7) into the undamped homogeneous form of 
Eq. (1), the Eigen frequencies of the orthotropic plate with elastically restrained along 
its edges are obtained.  By postulating the following Eigen frequency, which is 
analogous to the case of a plate simply supported at all edges (Alisjahbana and 
Wangsadinata 2012), natural frequencies of the system can be expressed as: 
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where p and q are real numbers to be solved from a system of two transcendental 
equations, obtained from the solution of two auxiliary Levy’s type problems, also 
known as the Modified Bolotin Method (Pevzner 2000). 
 
4 DYNAMIC RESPONSE OF THE RIGID ROADWAY PAVEMENT 

The dynamic response of the plate can be found by using the method of separation of 
variables, which can be written in the following form: 
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where Xmn(x), Ymn(y) are Eigen functions, Tmn(t) is a function of time which must be 
determined through further analysis.  The differential equation for the coefficient 
functions Tmn (t) can be expressed as: 
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where Qmn in Eq. (10) is a normalization factor that can be expressed as: 
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The particular solution of the temporal function Tmn(t) can be represented in a form 
of the Duhamel convolution integral as follows: 
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The general solution for the force response deflection of the plate to the traffic load 
p(x,y,t) expressed by Eq.  (2) is given in integral form as follows: 
 
For 0≤t≤t0: 
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For t>t0: 
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in which w0mn, v0mn are the initial deflection and initial velocity at t=t0. 
Bending moments and vertical shear forces in the plate can be computed in terms of 

the deflection and its derivatives obtained from Eqs.  (13) and (14) as expressed by the 
following equations: 
Bending moments: 
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Vertical shear forces: 
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5 RESULTS AND DISCUSSION 

A rectangular orthotropic plate resting on an elastic Pasternak foundation subjected to a 
moving harmonic load is considered.  The numerical values for the rigid roadway 
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pavement and the moving traffic load are as follows: a = 5 m, b = 3.5 m, h = 0.25 m, Ex 

= 2.7x109 N/m2, Ey = 2.25x109 N/m2, x = 0.18, y = 0.15, = 2.5x103 kg/m3, 
ks1x=ks2x=ks1y=ks2y = 2.5x106 N/m/m, kr1x=kr2x=kr1y=kr2y = 1 N-m/rad/m, P0 = 80 kN, v = 
60 km/h and = 5%, 10%.  Pasternak foundation parameters are as follows: case 1 (soft 
soil condition) Gs = 9.52x106 N/m, kf =2.72x107 N/m3; case 2 (medium soil condition) 
Gs = 1.904x107 N/m, kf =5.44x107 N/m3 and case 3 (hard soil condition) Gs = 3.808x107 
N/m, kf = 1.088x108 N/m3.  The traffic load moves along the centerline of the plate, 
parallel to the x-axis with constant velocity and the load frequency is v =50 rad/s.  It is 
assumed that the load moves from one end of the plate to the other and continues on to 
the adjacent plate.  Many factors have effects on the dynamic response of the plate 
resting on a Pasternak foundation subjected to moving load.  The main parameters are 
elastic foundation stiffness, load velocity and load frequency of the moving load.  It can 
be observed from Fig. (1) that by increasing the stiffness of the soil, the dynamic 
response of the plate decreases so are the load amplitude and velocity.  The absolute 
maximum dynamic deflection at the center of the plate has been plotted in Fig. (2).  It 
can be seen from Fig. (2) that the dynamic deflections occur when the velocity of the 
vehicle is close to the critical velocity. 
 

 

Qx time history for soft soil Qx time history for medium soil 

 
Mx distribution for soft soil Mx distribution for medium soil 

 
Figure 1.  Various dynamic responses of the plate at near resonance condition for soft soil 

condition (left) and medium soil condition (right). 
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Response spectra as a function of velocity Response spectra as a function of loads 
frequency 

 
Figure 2.  Maximum dynamic deflection as a function of velocity and load’s frequency for case 

1 (soft soil condition), case 2 (medium soil condition) and case 3 (hard soil condition). 
 
6 CONCLUSIONS 

A Modified Bolotin Method (MBM) for dynamic analysis of rigid pavements under 
moving vehicle loads is presented.  The concrete pavement sits on top of soil medium 
which is modelled by Pasternak model.  At any peak the critical velocity was observed 
to increase while the corresponding maximum deflection was found to decrease with 
the increase in the value of soil modulus.  The effect of foundation stiffness and load 
velocity is an important parameter for deflection of the plate under dynamic condition.  
On increasing the load velocity, for a finite plate, there is a critical velocity.  On 
increasing the load frequency, for a finite plate there is a critical frequency of the load.  
For the dynamic load, as the velocity increases, the absolute maximum dynamic 
deflection increases first until the velocity becomes close to the resonant velocity and 
decreases again after the resonant velocity. 
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