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Tapered Beam elements are of great importance in a wide range of structural 
applications because of their optimized distribution of strength and weight compared 
with the uniform ones.  Vibration analysis of beams with variable properties has been 
receiving great interest from engineers and researchers for a long time.  This paper 
presents the way in which new shape functions are constructed and used for analyzing 
free vibration of Timoshenko beams with linear variation in height or width and 
various boundary conditions.  Fundamental frequencies from the present work are 
compared with those obtained by different formulation and approaches.  The shape 
functions in the paper are derived for a solid rectangular beam with linearly taper 
changing in its sectional dimensions.  With the aid of the consistently derived shape 
functions in the finite element calculation, the solution to vibration problems with the 
least number of elements can be evaluated with high accuracy.  A detailed example is 
presented and compared with a reference work to illustrate the accuracy and 
computational efficiency for vibration analysis of linearly tapered Timoshenko beams. 
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1 INTRODUCTION 

Analyzing tapered beams in an efficient and accurate way has attracted much attention 
from many researchers.  These studies cover various aspects of tapered beams in lateral 
and torsional buckling, shear deformation, and dynamic problems.  Since the finite 
element method is a widely used tool for structural analysis, it is necessary to develop 
the shape functions for the tapered finite beam element.  With the appropriate shape 
functions for the stiffness matrix, the rotator matrix and loading vectors can be 
established consistently.  Several researchers have proposed the exact stiffness matrices 
or the shape functions for Euler-Bernoulli beams by solving the differential equations of 
displacement functions, Tang (1993).  Further attempts to find the exact formulations 
for stiffness matrices and shape functions for the Timoshenko beam have been carried 
out by some researchers, such as Eisenberger (1985). The latest accomplishment for 
Timoshenko non-uniform beam formulations makes use of the power series method to 
derive the dynamic stiffness, Leung (2001), and basic displacement functions, 
Attarnejad (2010).  However, in order to obtain reasonably accurate results, up to 10th 

order polynomial series functions are required, which causes the formulations to 
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become cumbersome and not concise.  In this paper, the beam elements employing 
consistent formulation of shape functions are derived based on the Hamilton principle 
requiring only one element for static problems and only two or the least elements for 
free vibration problems. 
 
2 TIMOSHENKO BEAM THEORY 

Strain and kinetic energy for a tapered Timoshenko beam element can be written by 
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Where u, w and θ are the axial displacement, transverse displacement and rotation 
of the beam;  is the shear correction factor, E and G are respectively the Young’s and 
shear moduli; ρ is the density; (.),x and (.),t represent differentiations with respect to 
coordinate x and time t, respectively; ( )A x and ( )I x are respectively the cross section area 
and moment of inertia linearly vary in the x direction. 
 
3 FORMULATION OF TAPERED BEAM SHAPE FUNCTIONS 

 

 
 

Figure 1.  Linearly tapered beam cross-section. 
 

Consider a solid beam with linearly tapered cross-section shown in Figure 1, the 
variations in height and width of the beam are defined as follows: 
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n and q are the width and height taper rates, respectively. From Eq. (1), the Euler-
Lagrange equations for the Timoshenko beam are accordingly. 
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The shape functions for u, w and θ are obtained by solving the differential equations 
in Eqs. (3-5).  The coefficients of the shape functions are defined by substituting the 2nd 
and 3rd Taylor series for natural logarithmic terms and applying boundary conditions of 
two end nodes of the beam.  For the sake of simplicity, the axial displacement shape 
functions and its kth order derivatives (k=0,1,2) of the linear tapered beam varying in 
height or width can be given in a series form as  
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where  is a constant defined from taper coefficients (for a uniform section
2 20; 0; 2n q m p   ) and Ruij is the axial shape function coefficient corresponding to 

the ith node and the jth degree of freedom. 
Similarly, the shape functions for transverse displacement and rotation of the beam 

and their derivatives can be defined as followed: 
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 is a constant defined from taper coefficients (for a uniform section

  3 30; 0; 12 1n p m p     ); Rwij and Rθij are respectively the transverse and rotation 

shape function coefficients corresponding to the ith node and the jth degree of freedom. 
Applying the principle of stationary total energy to Eq. (1) and substituting the 
derivative shape functions, the following discrete beam element stiffness 
equations can be obtained in a matrix forms as 

ex M D K D F                                                      (9) 

where, K and M is the stiffness matrix and mass matrix of the beam, respectively; Fex is 
the external nodal load vector.  In the free vibration analysis, the right-hand side of the 
Eq.  (9) is set to zero and a harmonic response, sin tD D is assumed so that the Eq.  
(9) deduced to an eigenvalue problem as 

 2 K M D 0                                                        (10) 

where ω is the circular frequency and D is the vibration amplitude. 
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4     NUMERICAL RESULT 

Let consider a tapered beam with 2 2
0 0/ ( )r I A L =0.01, E/�G=3.12, к=2/3 made of 

steel (with Young’s modulus E=210 GPa, mass densityρ=7850 kg/m3) under various 
boundary conditions (clamped-free, clamped-pinned and clamped-clamped), as shown 
in Figure 2a-c. 
 

 
 

Figure 2.  Linear – varying height beams with various boundary conditions (BCs). 
 
Table 1.  Non-dimensional frequency of tapered beams with various boundary conditions (BCs). 

 
q BCs Mode-i μ1 μ2 μ3 μ4 

0 

C-F 
Attarnejad (2010) 3.2271 14.4689 31.5025 47.9090 

Present 3.2272 14.4778 31.5024 48.1968 
Difference (%) 0.0031 0.0615 -0.0003 0.6007 

C-P 
Attarnejad (2010) 11.08250 27.11438 44.84353 59.2030 

Present 11.08680 27.17590 45.11830 59.4452 
Difference (%) 0.0388 0.2269 0.6127 0.4091 

C-C 
Attarnejad (2010) 13.83476 28.51793 45.66595 61.8621 

Present 13.83890 28.58680 45.95580 61.4241 
Difference (%) 0.0299 0.2415 0.6347 -0.7080 

0.2 

C-F 
Attarnejad (2010) 3.33065 14.28921 30.71080 47.7502 

Present 3.31530 14.32890 30.91900 48.1303 
Difference (%) -0.4609 0.2778 0.6779 0.7960 

C-P 
Attarnejad (2010) 10.68689 26.10717 43.59072 61.6560 

Present 10.75020 26.31190 44.30880 62.0536 
Difference (%) 0.5924 0.7842 1.6472 0.6449 

C-C 
Attarnejad (2010) 13.22227 27.77822 44.69713 61.8066 

Present 13.31860 27.95770 45.12020 61.9055 
Difference (%) 0.7285 0.6461 0.9465 0.1600 
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The cross-section is rectangular with constant width and linear-varying height.  

Non-dimensional frequencies of the beam which is defined as 4
0 0/ ( )A L EI    with 

two height ratio values (q=0 and q=0.2, q as in Eq. (2)) are given in Table 1 in 
comparison with that of Attarnejad (2010). 

From Table 1, good agreements can be observed among the first four non-
dimensional frequencies in the present work by using two elements with the results 
shown in the reference regardless of boundary conditions and height ratio values. 

 
5 CONCLUSIONS 

In the present work, consistent formulation of shape functions for the linearly varying 
width and height of a Timoshenko beam section were derived based on the Hamilton 
principle.  The beam elements that use these shape functions are “shear locking” free 
and require only two elements for free vibration problems.  The Taylor Series expanded 
at the right end node was selected to give the smallest errors in the analyses.  By using 
the derived shape functions, in the finite element formulations, the solution of vibration 
problems with the least number of elements can approximate the results with high 
accuracy. 
 
Appendix: Coefficient matrices for the shape functions 
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