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Many plate structures used especially in naval and aerospace applications undergo 
deflections that are not small in comparison to the thickness of the plate, but they are 
still small compared to other dimensions of the plate, so analysis must include the 
effects of the large displacements on the structures.  This report developed an elegant 
finite element formulation for analyzing the geometrically nonlinear static behavior of 
arbitrary-shaped thin plates.  An arbitrary planform of a whole plate was mapped into a 
square domain where a cubic serendipity shape function represented the arbitrary 
geometry.  An ACM plate-bending element along with the inplane deformations was 
considered for the displacement function.  The nonlinear formulation was done in the 
total Lagrangian coordinate system using [N]-notation, and the nonlinear governing 
equations were solved by Newton Raphson iterative method.  It was found that the 
element was capable of accommodating different geometries just like isoparametric 
element.  The efficacy of the element was shown by comparing the deflections and 
stresses at critical points of the plates of square, skewed, and circular geometries with 
previously published results. 

Keywords: Nonlinear static analysis, Mapping, Newton Raphson Method, Arbitrary 
plates, Finite Element Method.  

 

 
1 INTRODUCTION 

Plated structures especially in naval and aerospace engineering may undergo large 
deflections under transverse loads, hence their additional effects must be accounted for 
in analysis.  In a linear analysis, the geometry of the elements remain practically 
unchanged during loading process, for which the first order infinitesimal linear strain 
approximation suffices.  But in a nonlinear analysis, because of the modification of the 
geometry based on the current displacements, applied forces are constantly adjusted for 
in the current state of equilibrium until the residual force is reduced to an acceptable 
level.   

In this report, the geometrically nonlinear static behavior of arbitrary-shaped thin 
plates is studied.  An ACM plate-bending element considered by Adini and Clough 
(1961) and Melosh (1963), along with the in-plane deformations, was considered for 
the displacement function.  This element considered only thin plates and hence did not 
consider the shear deformation.  This eliminated the shear-locking problem and 
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generation of spurious mechanisms.  In this formulation, the arbitrary planform of the 
whole plate was mapped into a square domain, and the nonlinear formulation used Von-
Karman’s nonlinear equation in the total Lagrangian coordinate system using [N]-
notation.  Further, the nonlinear governing equations were solved by the Newton 
Raphson iterative method. 
 
2 MAPPING OF THE PLATE  

The arbitrary shape of the plate was mapped (Barik and Mukhopadhyay 1998) 
approximately into a [−1, +1] region in the ξ − η plane, with the help of the cubic 
serendipity shape function (Zienkiewich and Taylor 1989).  The mapped square plate 
was now discretized into a number of elements, and each element was mapped with the 
same cubic serendipity shape function to a natural coordinate element of domain [−1, 
+1]. 
 
3 DISPLACEMENT INTERPOLATION FUNCTION 

For the proposed element, the 4-noded rectangular ACM plate-bending element with 
five degrees of freedom (u, v, w, θx, θy) at each node was considered.  The 
interpolation functions for the inplane and bending were the usual ones presented in 
detail in Barik and Mukhopadhyay (2002). 
 
4 FORMULATION OF GEOMETRIC NON-LINEARITY  

The geometrically nonlinear formulation (Mukhopadhyay et al. 2004) was done using 
the [N]-notation formulated by Mallet and Marcal (1968), and the displacements 
referred to the original configuration following the Lagrangian method. 
 
5 RESULTS  

A square plate subjected to a uniformly-distributed load was analyzed for various load 
factors.  Fig. 1(a) - 2(a) compares the present results with Levy (1942), Bogner et al. 
(1965) and Pica et al. (1980) for a clamped square plate, and Fig. 2(b) - 3(a) with 
Rushton KR. (1970) and Pica, A. et al. (1980) for a simply-supported square plate.  A 
rectangular plate with different aspect ratios of 1.0, 1.5, and 2.0 were analyzed.  Fig. 
3(b) - 4(b) explains the present results for deflection, stress at the center, and stress at 
the center of an edge for clamped boundaries on all sides.  A skew plate for all sides 
clamped was analyzed.  The present results are shown in Fig. 5(a) - 6(a) which compare 
deflection, stress at the center, and stress at the center of an edge at different skew 
angles of 0°, 30°, and 45°.   A clamped circular plate under a uniformly-distributed load 
was analyzed and compared with Schmit (1968) and Pica et al. (1980) in Fig. 6(b) - 
7(b).  
 
6 CONCLUSIONS 

In order to have a geometrically-nonlinear static analysis of thin plates of arbitrary 
shapes, the formulation must be generalized by means of a mapping technique so that 
the analysis is performed in a square domain.  In this report, cubic serendipity shape 
functions were used to represent the geometry of the plate, and four noded non-
conforming ACM elements along with in-plane displacements were considered for 
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displacement functions.  In this context, the formulation was done in the total 
Lagrangian co-ordinate system, and the Newton-Raphson technique was used to solve 
nonlinear governing equations.  A MATLAB code was written for the analysis, and 
results obtained for various geometries of the plate compared with available research 
were found to be in good agreement.  
 

 
 

(a) Deflection at center of clamped square plate.      (b) Stress at center of clamped square  
                                      Plate. 
 

Figure 1.  Effects at center of clamped square plates. 
 

 
 

(a) Mid-edge stress of clamped square plate.            (b) Deflection at center of clamped 
square                                       plate. 
 

Figure 2.  Effects at edge and center of clamped plates. 
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  (a) Stress at center of SS square plate.                 (b) Central deflection of clamped    
        rectangular plate.      

         
Figure 3.  Effects on square and rectangular plates. 

 

       (a) Central stress of clamped rectangular plate.                     (b) Midedge stress of clamped    
rectangular plate. 

 
Figure 4.  Effects on clamped rectangular plates. 
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   (a) Deflection at center of clamped skew plate.            (b) Central stress of clamped skew plate.      
          

Figure 5.  Effects on clamped skew plates. 
 

 
   (a) Midedge stress of clamped skew plate.              (b) Central deflection of clamped circular  

                                                                 plate.           
    

Figure 6.  Effects on clamped skew and circular plates. 
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 (a) Central stress of clamped circular plate.                  (b) Edge stress of clamped circular plate.      
       

Figure 7.  Stress on clamped circular plates. 
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