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The primary consolidation process in clay involves changes in excess pore water 
pressure (EPWP) with time.  The changes in the EPWP are related to permeability, 
void ratio, and boundary conditions. Closed-form solutions for simple initial EPWP 
have been published.  Such solutions include simplifying assumptions and limited to 
few impractical initial EPWP distributions.  Generally, the initial EPWP encountered in 
practice is complex, in which case, numerical methods are used.  The finite differences 
and the finite element methods are the primary tools employed in the analysis of 
settlement behavior of fine-grained soils.  Unfortunately, these methods suffer from 
three main problems: (1) they require evaluation of EPWP vectors at each time 
increment which results in a large number of calculations; (2) roundoff errors at each 
time increment; and (3) the solution for a given initial EPWP distribution is achieved at 
a predetermined integer time increment.  An innovative explicit finite difference model 
is proposed that will permit any initial EPWP distribution, substantially reduces the 
number of calculations and roundoff errors.  

Keywords:  Consolidation, Closed-form solution, Excess pore water pressure, Clay soil, 
Fine-grained soils, Permeability, Roundoff errors. 

 

  

1 OVERVIEW 

Most time rate of settlement estimates are based on a one-dimensional model using an initial 

applied vertical stress distribution.  Consolidation tests are used for the purpose of determining 

the compression properties of the soil(s) in question.  The primary consolidation process involves 

changes in excess pore water pressure (EPWP) and consequently in void ratio with time.  For 

sand, gravel, and other highly permeable soils, the time required for complete primary 

consolidation is insignificant when compared to that of clay.  The one-dimensional model, which 

relates EPWP distributions to depth at any time (Terzaghi 1943) is given as:  
 

                                                                        
𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2
                                                                  (1) 

 

where u is the excess pore water pressure at time t and depth z and cv is the coefficient of 

consolidation.  Terzaghi (1943) presented a closed-form solution to this problem that included 

several simplifying assumptions was applied to a few initial EPWP distributions with depth.  For 

most practical problems, the initial EPWP distribution is non-linear with depth due to partial 

EPWP dissipation under previous load and/or complex surface load configurations.  

Consequently, numerical methods are generally used for time rate of settlement calculations. 
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2 THE FINITE DIFFERENCE METHOD 

Besides the finite elements, the finite difference method is perhaps the main numerical technique 

employed in geotechnical engineering.  This method has been used extensively in the solution of 

time rate of settlement problems (Barden and Berry 1965, Hanson and Nielson 1965, Harr 1966, 

Hansen and Nielson 1965, Desai and Christian 1977).  The solution of Eq. (1) for the EPWP may 

be viewed as a surface in a three-dimensional space.  Therefore, at a given time t = tj and depth z 

= zi, the surface is defined in terms of the function u(zi,tj). Where m is the number of depth 

increments and n is the number of time increments for which EPWP is computed. In general, i = 

0, 1, ..., m and j = 0, 1, ..., n.  The second derivative appearing in Eq. (1) can be approximated 

using a central derivative finite difference equation (Al-Khafaji and Tooley 1986).  Hence, at 

node zi and at t = tj, write: 
 

                                                       
𝜕2𝑢

𝜕𝑧2
|
 𝑎𝑡 𝑡𝑗,𝑧𝑖

=
𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

(∆𝑧)2
                                          (2a) 

 

The approximation of the first derivative of u with respect to time at t = tj and z = zi is made 

using a forward difference approximation as: 
 

                                                      
𝜕𝑢

𝜕𝑧
|
 𝑎𝑡 𝑡𝑗,𝑧𝑖

=
−𝑢𝑖,𝑗+𝑢𝑖,𝑗+1

∆𝑡
                                                      (2b) 

 

For a given soil layer of thickness Ho, the depth increment z = Ho/m and the time increment 

t = t/n.  Direct substitution of Eq. (2a) and Eq. (2b) into Eq. (1) yield a so-called explicit 

recurrence formula.  The Crank-Nicolson method provides a means of approximating the second 

derivative in which t can be made larger without loss of stability.  This method estimates the 

second derivative appearing in Eq. (1) by taking the average central difference approximations to 

∂2u/∂z2 at t = tj and t = tj+1.  That is: 
 

                               
−𝑢𝑖,𝑗+𝑢𝑖,𝑗+1

∆𝑡
= 𝑐𝑣

(𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗)+ (𝑢𝑖−1,𝑗+1−2𝑢𝑖,𝑗+1+𝑢𝑖+1,𝑗+1)

2(∆𝑧)2
               (3) 

 

Denoting = cv t/z2 , then simplifying gives: 
 

                                        𝑢𝑖−1,𝑗+1 + (2 − 2𝛼)𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1 =  −𝑢𝑖−1,𝑗 − (2𝛼 − 2)𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗         (4) 
 

Eq. (4) is the implicit finite difference equation, which is stable for any value.  

Additionally, this method will easily handle incompatibility between the initial and boundary 

condition at time t=0.  Therefore, for a soil layer free-draining at the top and bottom, it is possible 

to express Eq. (4) in matrix form for the m+1 nodes along the depth z as: 
 

[
 
 
 
 
2 + 2𝛼 −𝛼
−𝛼 2 + 2𝛼 −𝛼

⋱ ⋱ ⋱
−𝛼 2 + 2𝛼 −𝛼

𝛼 2 + 2𝛼]
 
 
 
 

{
 
 

 
 
𝑢1
𝑢2
⋮

𝑢𝑛−1
𝑢𝑛 }

 
 

 
 

𝑗+1

= 

[
 
 
 
 
2 − 2𝛼 −𝛼
−𝛼 2 − 2𝛼 −𝛼

⋱ ⋱ ⋱
−𝛼 2 − 2𝛼 −𝛼

𝛼 2 − 2𝛼]
 
 
 
 

{
 
 

 
 
𝑢1
𝑢2
⋮

𝑢𝑛−1
𝑢𝑛 }

 
 

 
 

𝑗

          (5) 

 

Note that elements not shown are equal to zero.  In a compact matrix form: 
 

                                                                [𝐴]{𝑢}𝑗+1 = [𝐵]{𝑢}𝑗                                                                    (6) 
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Eq. (6) represents a set of linear algebraic equation that can be solved for the unknowns 

EPWP vector at time j+1 in terms of values at time j.  It is possible to accomplish that using 

matrix inversion, which gives: 
 

{𝑢}𝑗+1 = [𝐴]
−1[𝐵]{𝑢}𝑗 =  [𝐶]{𝑢}𝑗                                                    (7) 

 

where [C] = [A]-1[B] and [A]-1 is the inverse of matrix [A].  It is important to emphasize that 

while this method places no restriction on the -value, the accuracy of the solution still depends 

on the choice of time and depth increment being used.  

 

3 THE EIGENPROBLEM METHOD 

The basis for this method can be best explained by considering a soil layer with free drainage at 

the top and the bottom boundaries.  Suppose that the EPWP initially at t=0 is given by the vector 

{u}o, then the new values of EPWP at times j=0,...n are computed explicitly using Eq. (7).  
 

                                                                  {𝑢}1 = [𝐶]{𝑢}0                                                                          (8) 
 

                                                 {𝑢}2 = [𝐶]{𝑢}1 = [𝐶][𝐶]{𝑢}0 = [𝐶]
2{𝑢}0                                              (9) 

 

                                            {𝑢}3 = [𝐶]{𝑢}2 = [𝐶][𝐶]
2{𝑢}0 = [𝐶]

3{𝑢}0                                            (10) 
 

and for the n-th increment: 
 

                                                        {𝑢}𝑛 = [𝐶]
𝑛−𝑗{𝑢}𝑗       𝑓𝑜𝑟 𝑗 = 0,                                                        (11) 

 

Eq. (11) has the advantage over Eq. (7) in that the number of calculations and roundoff errors 

at any time are minimized.  Instead, matrix [C] is raised to the desired power directly without the 

need for computing intermediate EPWP values.  Raising a square matrix to any power is an 

eigenproblem.  The eigenvalues and their corresponding vectors for the [C] matrix are determined 

by solving the following equation: 
 

                                                                      [𝐶]{𝜑} =  𝜆{𝜑}                                                                    (12) 
 

Where  represents the eigenvalues of the square matrix [C] whose size is (m-1)x(m-1).  This 

is because there are m+1 nodes along depth z and the EPWP at the top and bottom are eliminated 

due to free drainage.  Hence, the solution for the {} vector is achieved by forcing the following 

determinant to zero to yield the m-1 eigenvalues.  Thus: 
 

                                                                      |[𝐶] − 𝜆[𝐼]| =  0                                                                   (13) 
 

Expanding the determinant given by Eq. (13) yields a polynomial of order (m-1) and whose 

roots are the eigenvalues.  The evaluation of the eigenvalues is covered in most textbooks on 

numerical method.  For this special case, it can be shown (Al-Khafaji and Tooley 1986) that the 

eigenvalues of matrix [C] in Eq. (13) can be calculated using: 
 

                                                        𝜆𝑇 = 
2−4𝛼[𝑠𝑖𝑛2(

𝑟𝜋

2𝑚
)]

2+4𝛼[𝑠𝑖𝑛2(
𝑟𝜋

2𝑚
)]

   for      r = 1,…, m-1                                           (14) 

 

Where r is the number of interior nodes for which the eigenvalues are needed. Eq. (14) is to 

be used only when the consolidating layer is free draining at both boundaries.  Substituting each 

of the eigenvalues into Eq. (12) yields the corresponding eigenvectors {}
1
, {}

2 , ..., {}
m-1

.  
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Note that because free drainage is assumed at the top and bottom of the soil layer, there are m-1 

depths (nodes) at which the EPWP needs to be computed.  Therefore, 
 

[C]{𝜑}
1
 = 

1
 {𝜑}

1                                                                         (15) 

[C]{𝜑}
2
 = 

2
 {𝜑}

2                                                                         (16) 

 
[C]{𝜑}

m-1
 = 

m-1
 {𝜑}

m-1                                                                    (17) 
 

These equations can be expressed more conveniently in the following form: 
 

[𝐶][{𝜑}1{𝜑}2…{𝜑}𝑚−1] =  [{𝜑}1{𝜑}2…{𝜑}𝑚−1] [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑚−1

]                           (18) 

in a compact matrix form, we have: 
 

[𝐶][𝜙] =  [𝜙][𝜆]                                                                       (19) 
 

where [] is a square eigenvectors matrix and [] is a diagonal eigenvalues matrix.  Therefore, 

multiplying Eq. (18) by the inverse of the eigenvector matrix []-1 gives: 
 

[C] = [𝜙][][𝜙]-1                                                                   (20) 
 

The square of the matrix [A] is now given as: 
 

[C]
2
 = [𝜙][][𝜙]

-1
[𝜙][][𝜙]

-1                                                          (21) 

[C]
2
 = [𝜙][]

2
[𝜙]

-1                                                                             (22) 

 

Similarly raising [C] to the n
th
 power yields: 

 

                                                                 [𝐶]𝑛 = [𝜙][𝜆]𝑛[𝜙]−1                                                                (23) 
 

The advantage of Eq. (23) involves the simple task of raising its diagonal elements to any 

power including a fraction.  Substituting Eq. (23) into Eq. (11) gives the implicit solution to the 

one-dimensional time rate of settlement problem. 
 

                                           [𝑢]𝑛 = [𝜙][𝜆]
𝑛−𝑗[𝜙]−1[𝑢]𝑗          𝑓𝑜𝑟     𝑗 = 0, …𝑛                                          (24) 

 

It is often convenient to express time in terms of the dimensionless parameter known as the 

time factor T.  This is expressed in terms of the length of drainage path Hdp, the time in question t, 

and the coefficient of consolidation cv as follows: 
 

                                                                            𝑇 =
𝐶𝑣𝑡

𝐻𝑑𝑝
2                                                                     (25) 

 

The length of drainage path can be expressed in terms of the thickness of the consolidating 

layer, Ho.  For a soil drained at both ends: 
 

                                                                     𝐻𝑑𝑝 =
𝐻𝑜

2
=

𝑚

2
∆𝑧                                                                    (26) 

 



Resilient Structures and Sustainable Construction 

 

5 

The coefficient of consolidation can be expressed next in terms of and the depth and time 

increments as follows: 
 

                                                                            𝑐𝑣 =
(∆𝑧)2

∆𝑡
𝛼                                                                     (27) 

 

Substituting Eq. (26) and Eq. (27) into Eq. (25) and noting that t = nt gives the time factor in 

terms of  depth and time increments.  Thus, 
 

                                                                       𝑇 =
(∆𝑧)2

∆𝑡
𝛼(𝑛∆𝑡)

(
𝑚

2
∆𝑧)

2 =
4𝛼𝑛

𝑚2                                                         (28) 

 

The average degree of consolidation for the entire soil layer at any time Uj is determined in 

terms of the initial area enclosed by the EPWP versus depth distribution Ao and the area enclosed 

by the EPWP versus depth at any time Aj.  Thus, 
 

                                                                  𝑈𝑗 = 1 −
𝐴𝑗

𝐴𝑜
     for     j = 0,…n                                                   (29) 

 

The areas Ao and Aj may be computed using the numerical methods of integration, such as 

the trapezoidal rule or Simpson’s 1/3 Rule.  

 

4 NUMERICAL EXAMPLE 

Determine the average degree of consolidation, time factor, and the EPWP after 2 years for a clay 

layer with free-draining boundaries assuming Ho = 18 m, cv = 6.48 m
2
/yr, an initial EPWP 

distribution of 100 kN/m
2
 and = 1/6.  

 

5 SOLUTION 

Since the compressible soil layer has free draining boundaries, the length of drainage is taken as 

Hdp= Ho/2 = 9 m.  Substituting = 1/6 and z = 18/10 = 1.8 m into Eq. (27), then solving for the 

time increment gives:  
 

                                               Δ𝑡 =  
(1/6)(1.8)2

6.4
 = 0.0844 𝑦𝑒𝑎𝑟                                          (30) 

 

Thus, n = 2/0.0844 = 23.7.  Note that the time increment is not an integer but this method 

works regardless of the calculated time increment! The {u}o vector is now used in Eq. (24) to 

calculate the EPWP after 2 years.  That is substituting j = 0 and n = 30.62 gives 
 

{

𝑢1
𝑢2
⋮
𝑢9

}

23.7

= [φ] [

𝜆1 0 0
0 𝜆2 0
0 ⋱ 0
0 0 𝜆9

]

23.7

[φ]−1 {

100
100
⋮
100

}

0

                                    (31) 

 

Thus, n = 2/0.05 = 40.  The {u}0 vector is now used in Eq. (24) to calculate the EPWP after 2 

years.  That is substituting j = 0 and n = 40 gives: 
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{

𝑢1
𝑢2
⋮
𝑢9

}

40

= [{𝜑1}{𝜑2}… {𝜑9}] [

𝜆1 0 0
0 𝜆2 0
0 ⋱ 0
0 0 𝜆9

]

40

[

{𝜑1}
𝑡

{𝜑2}
𝑡

⋮
{𝜑9}

𝑡

] {

100
100
⋮

100

}

0

                          (32) 

Note that [φ], [φ]−1and the eigenvalues matrices are not listed here due to space limitations.  

The calculated EPWP vector is given as at time t = 2 years and 30.62 time increments{u}
transpose

 = 

{0, 27.73, 51.85, 69.85, 80.69, 84.28, 80.69, 69.85, 51.85, 27.73, 0}.  The time factor is 

calculated next by substituting m = 10, =1/6, and n=23.7 into Eq. (28) which gives     T= 0.158.  

The corresponding average degree of consolidation after 2 years is computed next using Eq. (29) 

and Simpson’s 1/3 rule of integration.  That is 
 

𝑈23.7 = 1 −
(
1.8

3
)[0+4(27.73)+2(51.85)+⋯.+0]

100(18)
= 1 −

988.76

1800
= 45.07                             (33) 

 

The calculated time factor and the average degree of consolidation compare to the analytical 

values of U = 45% and T = 0.159 reported by Perloff and Baron (1975).  

 

6 CONCLUSION 

A numerical method for solving the one dimensional consolidation time rate of settlement 

problem with an arbitrary initial EPWP is presented.  Unlike traditional numerical techniques, it 

is versatile in that once a model is developed, then arbitrary initial EPWP distribution can be 

analyzed without the need for reworking the problem.  Note that using the finite difference, one 

would be required to solve a given problem for a particular initial EPWP and the solution is not 

necessarily applicable to other initial EPWP distributions.  This is not the case with this approach.  

Furthermore, the solution procedure presented herein permits the determination of EPWP at any 

time without the need for computing intermediate EPWP values as required with the traditional 

finite difference methods.  In fact, it can even be used to calculate the EPWP at a fraction of a 

time increment.  This eliminates the need for interpolating when intermediate values between 

increments are needed.  The proposed method reduces substantially the roundoff errors associated 

with other numerical techniques because the solution at any time is given in terms of an initial 

EPWP vector. 
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