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The time rate of settlement process in clay involves changes in excess pore water 
pressure (EPWP) with time. Exact solutions have been published for constant initial 
EPWP and other simple distributions. The finite differences methods are generally used 
in solving complex initial EPWP distributions. Such methods suffer from roundoff 
errors at each time increment and truncation errors proportional to the step size used.  
The explicit finite difference method produces stable solutions when proper time and 
depth increments are used. An innovative explicit finite difference model involving 
eigenvalues and eigenvectors is proposed that will permit arbitrary initial EPWP 
distributions and reduce roundoff errors. This method is numerically stable and 
convergent. Unlike traditional methods, the proposed solution will also eliminate the 
need to calculate the EPWP vector traditionally required at each time increment. 
Instead, the EPWP can be computed directly for any number of time increments.  

Keywords:  Exact solution, Excess water pressure, Clay soil, Roundoff errors, 
Truncation errors, Implicit finite difference, Eigenvalues, Step size.

 

 

1 BACKGROUND 

Although analytical methods have and will continue to provide useful solution, they cannot yield 

realistic answers for problems involving nonhomogeneous and/or anisotropic materials with 

arbitrary boundary and/or initial conditions.  While a complete treatment of this broad subject is 

beyond the scope of this paper, the one-dimensional time rate of settlement problem with 

arbitrary initial excess porewater pressure (EPWP) is discussed.  The mathematical model 

relating the u is the excess pore water pressure u to time t, depth z and the soil coefficient of 

consolidation cv is was presented by Terzaghi (1943) as follows:  

                                                                                 
𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2
                                                              (1) 

Terzaghi and and Frolich (1936) published exact solutions to this model using simplifying 

assumptions for constant initial EPWP and other simple distributions with depth.  In engineering 

practice, the initial EPWP distribution is normally non-linear with depth due to complex surface 

load configurations and EPWP dissipation.  Thus, the finite differences methods are typically 

used for time rate of settlement calculations.  
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2 THE FINITE DIFFERENCE METHOD 

The basic concept involves discretization of arbitrary continuous functions and replacing them 

with their equivalent difference expressions.  The solution of Eq. (1) at a given time t = tj and 

depth zi with an arbitrary function u(zi, tj) at node zi can be approximated using difference 

expressions available in literature (Al-Khafaji and Tooley 1986) as follows: 

𝜕2𝑢

𝜕𝑧2
|
 𝑎𝑡 𝑡𝑗,𝑧𝑖

=
𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

(∆𝑧)2
                                                          (2a) 

The approximation of the first derivative of u with respect to time at t = tj and z = zi is made 

using a forward difference approximation as: 

𝜕𝑢

𝜕𝑧
|
 𝑎𝑡 𝑡𝑗,𝑧𝑖

=
−𝑢𝑖,𝑗+𝑢𝑖,𝑗+1

∆𝑡
                                                              (2b) 

Substituting Eq. (2a) and Eq. (2b) into Eq. (1) yields: 

−𝑢𝑖,𝑗+𝑢𝑖,𝑗+1

∆𝑡
= 𝑐𝑣

(𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗)

(∆𝑧)2
                                                  (3) 

For a given soil layer of thickness Ho, the depth increment z = Ho/m and the time increment 

t = t/n.  Where m is the number of depth increments and n is the number of time increments for 

which EPWP is computed.  In general, i = 0, 1, ..., m and j = 0, 1, ..., n.  Denoting = cvt/z
2
, 

then simplifying and rearranging Eq. (3) yields: 

            ui,j+1 = αui−1,j − (1 − 2α)ui,j + αui+1,j                                      (4) 

Eq. (4) is an explicit finite difference recurrence formula, which permits direct step-by-step 

evaluation of the EPWP.  The implication is that knowing the initial and boundary EPWP values 

at t = 0, it is possible to calculate the EPWP for a given time increment t=t.  Using Eq. (3), a set 

of linear algebraic equations can be developed which can be expressed in a matrix form for the 

m+1 nodes along the depth axis z as follows: 
 

 
{
 
 

 
 
utop
u1
⋮

um−1
ubot }

 
 

 
 

t=tj+1

=  

[
 
 
 
 
α 1 − 2α α

α 1 − 2α α
⋱ ⋱ ⋱ ⋱

α 1 − 2α α
α 1 − 2α α ]

 
 
 
 

{
 
 

 
 
utop
u1
⋮

um−1
ubot }

 
 

 
 

t=tj

                    (5a) 

 

Note that the EPWP drops to zero for doubly drained layer after the first time increment.  

That is, at t = t1 we have utop = ubot = 0 and Eq. (5a) is simplified to the following: 
 

 

{

u1
⋮

um−1
}

t=tj+1

= 

[
 
 
 
 
1 − 2α α
α 1 − 2α α
⋱ ⋱ ⋱ ⋱

α 1 − 2α α
α 1 − 2α]

 
 
 
 

{

u1
⋮

um−1
}

t=tj

                    (5b) 

 

Eq. (5b) can be written more conveniently in a compact matrix form as: 
 

          {u}j+1 = [A]{u}j                                                                              (6) 
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Eq. (6) is the explicit finite difference solution to the time rate of settlement problem.  The 

range of  should be between 0.0 and 0.5 for the solution to be stable, in fact = 1/6 gives the 

most accurate results (Scott 1963).  It is evident that the limitation imposed on  makes it 

necessary that the EPWP be evaluated at extremely large number of time increments.  This is 

precisely why the finite difference method is time consuming and subject to roundoff errors. 

 

3 THE EIGENPROBLEM METHOD 

Suppose that the EPWP initially at t = 0 is given by the vector {u}O, then the new values of 

EPWP at times j = 0,..., n are computed explicitly using Eq. (6):  

 

{u}1 = [A]{u}0                                                                (7) 

 

{u}2 = [A]{u}1 = [A][A]{u}0 = [A]
2{u}0                                         (8) 

 

{u}3 = [A]{u}2 = [A][A]
2{u}0 = [A]

3{u}0                                       (9) 

and for the n
th
 increment: 

 

 

{u}n = [A]
n−j{u}j for j = 0, … n                                                (10) 

 

Eq. (10) minimizes the roundoff errors, truncation errors and error propagation at each time 

step.  This is made possible by raising the matrix [A] to the desired power directly without the 

computing the EPWP values at each time step as is normally required when using the finite 

difference methods.  The eigenvalues and their corresponding vectors for the [A] matrix can be 

calculated by solving the following equation: 
 

 

[A]{φ} =  λ{φ}                                                                   (11) 
 

Where  represents the eigenvalues of the square matrix [A] whose size is (m-1) x (m-1).  

Note that there are m nodes with depth and the EPWP at the top and bottom boundaries of the soil 

layer are eliminated assuming free drainage.  Thus, the set of eigenvalues and eigenvectors of the 

matrix [A] are calculated by forcing the determinant below to equal zero. 
 

 

|[A] − λ[I]| =  0                                                                   (12) 
 

Expanding the determinant in Eq. (12) yields a polynomial of order (m-1) and whose roots 

are the eigenvalues.  The evaluation of the eigenvalues is covered in most textbooks on numerical 

method.  Fortunately, for this special case, the eigenvalues are given directly by the following 

equation: 
 

 

λT =  1 − 4α [sin2 (
rπ

2m
)]      for     r = 1,…m-1                                      (13) 

 

Where r is the interior node along the soil depth for which the eigenvalue is required.  Eq. 

(13) is valid only when the soil layer is free draining at the top and bottom boundaries.  

Substituting each of the calculated eigenvalues into Eq. (12) yields the corresponding 

eigenvectors { φ}1, { φ}2,...{φ}m-1.  The eigenvalues and eigenvectors for matric [A] can now be 

expressed as follow: 
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[A]{φ}1 = λ1{φ}1
[A]{φ}2 = λ2{φ}2

⋮
[A]{φ}m−1 = λm−1{φ}m−1

                                                         (14) 

 

These equations can be expressed in the following compact matrix form: 
 

 

[A][{φ}1{φ}2…{φ}m−1] =  [{φ}1{φ}2… {φ}m−1] [
λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λm−1

]              (15) 

 

or more simply: 
 

 

[A][ϕ] =  [ϕ][λ]                                                             (16) 
 

where [] is a square eigenvectors matrix and [] is a diagonal eigenvalues matrix.  Therefore, 

multiplying Eq. (16) by the inverse of the eigenvector matrix []-1 gives: 
 

[A] = [ϕ][λ][ϕ]−1                                                          (17) 
 

The square of the matrix [A] is now given as: 
 

[A]2 = [ϕ][λ][ϕ]−1[ϕ][λ][ϕ]−1 =  [ϕ][λ]2[ϕ]−1                                       (18) 
 

Similarly raising [A] to the n
th
 power yields: 

 

 

[A]n = [ϕ][λ]n[ϕ]−1                                                         (19) 
 

Substituting Eq. (16 19) into Eq. (10) gives the implicit solution to the one-dimensional time 

rate of settlement problem: 
 

 

[u]n = [ϕ][λ]
n−j[ϕ]−1[u]j        for     j = 0, …n                                    (20) 

 

Eq. (20) involves multiplication of three matrices, regardless of the number of time increment 

j.  This is true since raising a diagonal matrix to the power n
th
 power is accomplished by raising 

its diagonal values to the power n.  This is precisely the advantage of using Eq. (20) over the 

conventional finite difference procedure. 

The time parameter t is normally expressed in terms of a dimensionless time factor referred to 

as the time factor T.  Since length of drainage path H
dp

, the time in question t, and the coefficient 

of consolidation c
v
, we write: 

 

 

𝑇 =
𝐶𝑣𝑡

𝐻𝑑𝑝
2                                                                           (21) 

 

The length of drainage path can be expressed in terms of the thickness of the consolidating 

layer, Ho.  For a soil drained at both ends: 
 

 

𝐻𝑑𝑝 =
𝐻𝑜

2
=

𝑚

2
∆𝑧                                                                (22) 

 

The coefficient of consolidation can be expressed next in terms of and the depth and time 

increments as follows: 
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𝑐𝑣 =
(∆𝑧)2

∆𝑡
𝛼                                                                       (23) 

 

Substituting Eq. (22) and Eq. (23) into Eq. (21) and noting that t = nt gives the time factor in 

terms of  depth and time increments.  Thus: 
 

 

𝑇 =
(∆𝑧)2

∆𝑡
𝛼(𝑛∆𝑡)

(
𝑚

2
∆𝑧)

2 =
4𝛼𝑛

𝑚2                                                                     (24) 

 

The average degree of consolidation for the entire soil layer at any time Uj is determined in 

terms of the initial area enclosed by the EPWP versus depth distribution Ao and the area enclosed 

by the EPWP versus depth at any time Aj.  Thus, 
 

 

𝑈𝑗 = 1 −
𝐴𝑗

𝐴𝑜
     for     j = 0,…n                                                            (25) 

 

The areas Ao and Aj are computed using the Simpson 1/3 rule of integration at any time tj. 

 

4 NUMERICAL EXAMPLE 

Determine the average degree of consolidation, time factor, and the EPWP after 5 years for a 

doubly drained clay layer with a thickness of 18 m, cv = 15.0 m2/yr, and an initial EPWP 

distribution of 100 kN/m
2
.  Assume 𝛼 = 1/6 and six depth increments. 

Solution:  Since Hdp= Ho/2 = 9.0 m and substituting 𝛼=1/6 and z = 18/6 = 3.0 m into Eq. 

(25) gives: 
 

Δt =  (
1

6
)
(3)2

15
 = 0.10 year                                                             (26) 

 

The number of time increments is computed as n = 5/0.10 = 50.  The EPWP at the boundaries 

drops to zero at t > 0.  Furthermore, at t = 0 the EPWP utop = ubot = 100 kN/m
2
.  This discrepancy 

between the boundary conditions is resolved by taking the average value of EPWP of 50 kN/m
2
 

as the initial EPWP at the boundaries.  Thus: 
 

{
 
 

 
 
𝑢1
𝑢2
𝑢3
𝑢4
𝑢5}
 
 

 
 

1

= 

[
 
 
 
 
1/6 2/3 1/6 0 0 0 0
0 1/6 2/3 1/6 0 0 0
0 0 1/6 2/3 1/6 0 0
0 0 0 1/6 2/3 1/6 0
0 0 0 0 1/6 2/3 1/6]

 
 
 
 

[
 
 
 
 
 
 
50
100
100
100
100
100
50 ]

 
 
 
 
 
 

0

=

{
 
 

 
 
91.67
100.00
100.00
100.00
91.67 }

 
 

 
 

1

          (27) 

 

The eigenvalues and eigenvectors for this problem is given below and the {u}1 vector can be 

calculated after 5 years directly without intermediate steps.  That is substituting j = 1 and n = 50 

into Eq. (27) gives: 
 

{
 
 

 
 
u1
u2
u3
u4
u5}
 
 

 
 

50

= 
1

12

[
 
 
 
 
1 −1 1 −1 1

√3 −1 0 1 −√3
2 0 −1 0 2

√3 −1 0 −1 −√3
1 1 1 1 1 ]

 
 
 
 

[
 
 
 
 
0.9533 0 0 0 0
0 5/6 0 0 0
0 0 2/3 0 0
0 0 0 1/2 0
0 0 0 0 0.3780]

 
 
 
 
49

[
 
 
 
 1 √3 2 √3 1
−3 −1 − 3 0 3 3
4 0 −4 0 4
−3 3 0 −3 3

1 −√3 2 −√3 1]
 
 
 
 

{
 
 

 
 
91.67
100.00
100.00
100.00
91.67 }

 
 

 
 

1

(28) 

 

The calculated EPWP vector is given as {u}50 = {0, 6.469, 11.205, 12.938, 11.205, 6.469, 0}.  

The time factor is calculated next by substituting m = 6, = 1/6, and n = 50 into Eq. (24) which 
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gives T = 0.926.  The corresponding average degree of consolidation is computed next using Eq. 

(19) and Simpson’s 1/3 rule of integration.  That is: 

𝑈50 = 1 −
(
3.0

3
)[0+4(6.469)+2(11.205)+⋯.+0]

100(18)
= 91.76%                         (29) 

The time factor and the average degree of consolidation compare rather closely with the 

analytical values of T = 0.90 and U = 91.20% reported by Perloff and Baron (1976).  

 

5 CONCLUSION 

An innovative technique for solving the time rate of settlement in fine-grained soils is presented.  

The new technique is efficient and versatile in that it applies to any initial EPWP.  Unlike 

traditional finite differences methods, once the solution is achieved for a set of interior nodes, 

then arbitrary initial EPWP distributions are handled without the need to use finite differences.  

The proposed method produces stable solutions when proper time and depth increments are used. 

The formulation involves eigenvalues and eigenvectors that reduce roundoff and truncation 

errors.  Additionally, the proposed model allows the determination of EPWP at any time without 

the need for computing EPWP values at each time step.  It is also possible to calculate the EPWP 

at a fraction of a time increment which eliminates the need for interpolation.  This is the case 

when dealing with the finite difference procedure.  This innovative method reduces substantially 

the roundoff error and computational time associated with other numerical techniques.  The 

solution at any time is given in terms of an initial EPWP vector and is achieved by multiplying 

three matrices. This method is numerically stable and convergent. 
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