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EXCEL BASED SETTLEMENT OF BEAMS ON 

ELASTIC FOUNDATIONS WITH FREE-ENDS AND 

ARBITRARY LOADING 
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Dept of Civil Engineering and Construction, Bradley University, Peoria, USA  
 

The deflection of long footings placed on homogeneous and isotropic soils involves 
soil-structure differential equations models whose solution may not be possible for 
most practical problems. The analytical solution of beams on elastic foundation 
problem involves soil modulus of subgrade reaction and simplifying assumptions 
relative to applied loading. The exact solutions are available in relatively simple cases 
of loading, uniform cross sectional properties of the footing and constant soil modulus 
of subgrade reaction. Therefore, the Finite Difference Method (FDM) or Finite Element 
Method (FEM), are typically used to compute the deformation of beams with variable 
loading and geometry resting on elastic foundations with variable modulus of subgrade 
reaction. The finite differences method was used to solve this problem for long beams 
with arbitrary loading and constant cross-sections using an Excel Workbook to 
compute beam deflections providing both numerical and graphical output. The 
foundation is modeled as a long beam with free ends and a constant modulus of 
subgrade reaction. The proposed solution presents an efficient method involving a 
complex ordinary differential equation model for beams on elastic foundations 
encountered in engineering practice.  

Keywords: Finite differences method, Continuous beam, Modulus of subgrade 
reaction, Cross section, Variable loading. 

 

 

1 INTRODUCTION AND BACKGROUND 

The use of numerical techniques in solving complex engineering problems is widespread. 

Nevertheless, beams on elastic foundation are most usually analyzed based on Winkler’s model in 

which the soil is replaced by a bed of elastic springs. The theoretical solution of the Winkler 

model involves several simplifying assumptions and is of limited practical use (Al-Khafaji and 

Andersland 1991). Disadvantages of the theoretical solution include variable loading 

configurations including point loads, variability of soil properties under the footing and changes 

in footing cross sections. 

The Finite Difference Method (FDM) for solving the problem of beams resting on elastic 

foundations provide powerful and practical tools for the practicing geotechnical engineer (Szilard 

1974). This paper presents the finite difference solution using Excel spreadsheet to calculate the 

settlement of continuous long footing with variable loading. The FDM Excel model used is based 

on dividing the beam into 20 equal segments to permit significant variations in the applied 

loading configuration. 
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2 GOVERNING EQUATIONS FOR BEAMS ON ELASTIC FOUNDATIONS  

For the case of a beam on an elastic foundation shown in Figure 1, the governing differential 

equation is developed assuming the contact is never broken between beam and soil (Winterkorn 

and Fang 1975). Thus, a linear relationship between the force on the foundation (pressure q) and 

the deflection y is assumed using the modulus of subgrade reaction k. 

 

 
 

Figure 1.  Beam on elastic foundation. 

 

Note that Figure 1 shows a Winkler foundation model where the soil is replaced with elastic 

springs (Bowles 1982, Hetenyi 1946). The beam is assumed to have arbitrary loading q, 

elastically supported beam with free ends, and a reaction force ky and the curve y = y(x) is the 

deflected shape is given by: 

𝐸𝐼
𝑑4𝑦

𝑑𝑥4 + 𝑘𝑦 = 𝑞                                                       (1) 

where q is the applied loading function, EI defines the beam’s flexural rigidity, E is modulus of 

elasticity and I is the moment of inertia. Note that the Shear V and Moment M can be expressed 

as: 

𝑀 = −𝐸𝐼
𝑑2𝑦

𝑑𝑥2                                                           (2) 

𝑉 = −𝐸𝐼
𝑑3𝑦

𝑑𝑥3                                                            (3) 

Note that the focus of this paper is limited to the settlement of beams y for foundation placed 

on elastic soil.  Therefore, our focus is on the model presented by Eq. (1), but Eq. (2) and Eq. (3) 

can be easily evaluated once the deflection values are computed.  The application of FDM results 

in direct relationships between deflection, slope, bending moment, shear force and loading of the 

beam. Finite difference theory leads to approximations to these derivatives, at the discretized 

nodes along the beam, in terms of the unknown deflections at the nodes (Al-Khafaji and Tooley 

1986). 

 

3 THE FINITE DIFFERENCE METHOD 

Finite difference method discretizes the domain into a regular grid defined by a certain number of 

nodes, which are separated by number of intervals as shown in Figure 2. The FDM consists of 

replacing the derivatives in differential equations using their equivalent difference expressions 

based on Taylor's series (Al-Khafaji and Tooley 1986). The resulting finite difference expression 

is applied repeatedly at each node to yield a system of linear algebraic equations that is solved for 

the deflections at each node numerically.  
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Figure 2.  Finite differences grid for solving beam on elastic foundations problem. 

 

Eq. (1) can now be solved using central difference approximations for the first through the 

fourth derivative as presented below in Eq. (4) to Eq. (7): 

(
𝑑𝑦

𝑑𝑥
)

𝑖
=

−𝑦𝑖−1+𝑦𝑖+1

2ℎ
                                                                      (4) 

(
𝑑2𝑦

𝑑𝑥2)
𝑖

=
𝑦𝑖−1−2𝑦𝑖+𝑦𝑖+1

ℎ2                                                                   (5) 

(
𝑑3𝑦

𝑑𝑥3)
𝑖

=
−𝑦𝑖−2+2𝑦𝑖−1−2𝑦𝑖+1+𝑦𝑖+2

2ℎ3                                                           (6) 

(
𝑑4𝑦

𝑑𝑥4)
𝑖

=
𝑦𝑖−2−4𝑦𝑖−1+6𝑦𝑖−4𝑦𝑖+1+𝑦𝑖+2

ℎ4                                                        (7) 

Substituting Eq. (7) into Eq. (1) at x = xi yields, Eq. (8): 

  𝐸𝐼 (
𝑑4𝑦

𝑑𝑥4)
𝑖

+ 𝑘𝑦𝑖  = 𝑞𝑖   𝑜𝑟    𝐸𝐼
𝑦𝑖−2−4𝑦𝑖−1+6𝑦𝑖−4𝑦𝑖+1+𝑦𝑖+2

ℎ4 + 𝑘𝑦𝑖 = 𝑞𝑖                     (8) 

Simplifying gives: 

    𝑦𝑖−2 − 4𝑦𝑖−1 + [6 +
𝑘ℎ4

𝐸𝐼
] 𝑦𝑖 − 4𝑦𝑖+1 + 𝑦𝑖+2 =

𝑞𝑖ℎ4

𝐸𝐼
                                        (9) 

Once the boundary conditions are specified, Eq. (9) can be applied at each node to form a 

system of linear algebraic equations that can be solved for the unknown deflections. 

 

4 FREE BOUNDARY CONDITION 

In dealing with boundary conditions, the end nodes and the interior nodes next to them at each 

free end require special consideration before the finite difference analysis is completed. Consider 

the case when node 0 is at the left-hand end of the beam (Figure 2) where the bending moment 

and the shear at node 0 are both zero (Al-Khafaji and Tooley 1986). This allows us to remove the 

fictitious displacements at nodes -1 and -2 as follows: 

At the free end at the left-hand side, we have Eq. (10) and Eq. (11): 

𝑦−1 = 2𝑦𝑜 − 2𝑦1                                                            (10) 

𝑦−2 = 4𝑦𝑜 − 4𝑦1 + 𝑦2                                                        (11) 

At the free end at the right-hand side, we have Eq. (12) and Eq. (13): 

𝑦𝐿+1 = 2𝑦𝐿 − 2𝑦𝐿−1                                                      (12) 

𝑦𝐿+2 = 4𝑦𝐿−2 − 4𝑦𝐿−1 + 4𝑦𝑙                                               (13) 
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The fictitious deflections at nodes -2 and -1 at the free end on the left-hand side of the beam 

and those at nodes L+1 and L+2 at the free end on the right-hand side of the beam can now be 

replaced using the four equations listed above.  Thus, 

At the free end located at node 0:    

(2 +
𝑘ℎ4

𝐸𝐼
) 𝑦𝑜 − 4𝑦1 + 2𝑦2 =

ℎ4

𝐸𝐼
 𝑞𝑜                                                   (14) 

At the first node, node 1:    

−2𝑦𝑜 + (5 +
𝑘ℎ4

𝐸𝐼
) 𝑦1 − 4𝑦2 + 2𝑦3 =

ℎ4

𝐸𝐼
𝑞1                                                 (15) 

At the free end located at node L:    

2𝑦𝐿−2 − 4𝑦𝐿−1 + (2 +
𝑘ℎ4

𝐸𝐼
) 𝑦𝐿 =

ℎ4

𝐸𝐼
𝑞𝐿                                                   (16) 

At node L − 1:    

𝑦𝐿−3 − 4𝑦𝐿−2 + (5 +
𝑘ℎ4

𝐸𝐼
) 𝑦𝐿−1 − 2𝑦𝑙 =

ℎ4

𝐸𝐼
𝑞𝐿−1                                          (17) 

Eq. (9) can be used for all interior nodes of the beam and Eq. (14) and Eq. (15) should be 

used at nodes 0 and 1. Eq. (16) and Eq. (17) should be used at nodes L-1 and L.  

 

5 NUMERICAL EXAMPLE 

Consider the concrete beam shown in Figure 3 with free ends resting on elastic foundation and 

compute the deflections along its length assuming 20 length increments, L = 20 m, E = 3x107 

kN/m2, k = 24,000 kN/m3. The beam cross section is h = 0.3 m high and b = 1.0 m wide.  

 

6 SOLUTION 

Note that the Excel program developed is based on dividing any beam into 20 equal length 

increments along the beam. This is to maximize the accuracy of the computed deflections and 

permit significant variations in the loading on the beam. In this case, the length increment h = 

20/20 = 1.0 m. The beam characteristics are calculated as: 

I =
1

12
bh3 =

1

12
1.0(0.3)3 = 0.0105833 m4                                           (18) 

EI = 0.0105833 (3x107) = 317,500 kN ∙ m2                                       (19) 

Thus, using the equations developed earlier and the loading presented above, the deflected 

shape of the beam is shown below in Figure 4.   

Note that the deflection values are given in meters.  Furthermore, the deflection on the right-

hand side of the beam is actually above the ground! This is referred to as the corner effect. 

Clearly, this example illustrates the power of the Excel spreadsheet to analyze geotechnical 

problems that are impossible to solve using analytical methods. 
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Figure 3.  Schematic for numerical example for beam on elastic foundation. 

 

 
 

Figure 4.  Excel generated solution using the developed finite differences grid. 

 

7 SUMMARY AND CONCLUSIONS 

The majority of analytical solutions for beam on elastic foundations are of limited practical use 

because of the many simplifying assumptions used and their failure to deal with load 

discontinuities and other complexities.  In most cases, the variability in the imposed loading on a 

beam resting on elastic foundation makes it impossible to compute the deflections of beams 

analytically. The finite differences method was used to solve this problem for long beams with 

free ends, arbitrary loading and constant cross-sections using an Excel Workbook providing both 

numerical and graphical output. The Excel workbook was developed using 20 length increments 

to best describe arbitrary loadings on the beam. That is, if a concentrated load is applied at any 
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location it can be transformed into a uniform load by dividing its value by the length increment h 

which is 1/20 of the beam’s length. The solution of this problem can be extended to beams with 

other end conditions, variable cross sections and modulus of subgrade reaction. The finite 

difference method is readily applicable to other soil-structure interaction problems that are 

important in geotechnical engineering. 

 

References 

Al-Khafaji, A. W. N., Andersland, O. B., and Lou, K., GEOTEK-PRO 2.0:  Geotechnical Software for the 
IBM-PC (Professional) by Al-Khafaji, A. W. N., Andersland, O. B., and Lou, K., National 
Laboratories, Evansville, Indiana, ISBN  0-9618343-2-3, 1991.  

Al-Khafaji, A. W. and Andersland, O. B., Geotechnical Engineering and Soil Testing, Saunders College 
Publishing, Harcourt Brace Jovanovich College Publishers, Philadelphia, PA, ISBN  0-03-004377-8, 
1992.  

Al-Khafaji, A. W. and Tooley, J. R., Numerical Methods in Engineering Practice, Holt, Rinehart and 
Winston Book Company, New York, New York, ISBN 0-03-001757-2, 1986.  

Bowles J. E., Foundation Analysis and Design, 3rd Ed., New York: McGraw-Hill, ISBN 19820070661928, 
1982. 

Hetenyi, M., Beams on Elastic Foundation, Waverly Press, Baltimore, 1946. 
Szilard, R., Theory and Analysis of Plates, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., ISBN 0-13-

913426-3, 1974. 
Winterkorn, H. F. and Fang H. Y., Foundation Engineering Handbook, New York:  Van Nostrand 

Reinhold Co., ISBN 0442295642, 1975. 


