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According to most theoretical and experimental researches, wave models quite fully 
and accurately describe the process of foundation vibration in the soil ground.  Thus, 
solutions obtained for the vibration of an infinite plate with a circular cut are 
successfully used today to determine the amplitude-frequency characteristics of the pile 
foundations; however, the results of the cases with more than one cut are practically 
needed.  In this paper, analytical expressions are found for dynamic stiffness within the 
wave model framework regarding the vertical vibrations of an infinitely thin plate with 
circular cuts, their mutual alignment being regarded.  Determined expressions take into 
account the distance between piles located in a row or in a group.  Obtained results can 
be used for the calculations of amplitude-frequency characteristics of pile foundations. 

Keywords:  Pile foundation, Characteristics of foundation vibrations, Wave model, 
Mutual influence of piles.  

 

 

1 INTRODUCTION 

According to Russian construction code, the design of the pile foundation under the machines 

with dynamic loadings may include the distance between pile centers within the range from 2 to 

10 diameters.  The standards however do not include the dependence of varying stiffness and 

damping on the distance between piles and their groups; thus it is advisable to have these ratios to 

evaluate the amplitude-frequency characteristics for engineering calculations.  Note that activities 

to determine the amplitude-frequency characteristics of pile foundations have been started quite a 

long time ago, but are still unfinished.  Most investigations are devoted to the interaction of a 

single pile with soil under the dynamic loading (Baranov 1967, Wu et al. 2013); attempts are 

undertaken to analyze the dynamic reactions of pile groups (Guz et al. 1974, El Naggar and 

Novak 1994, Nuzhdin et al. 2005).  

This paper determines the links between the motions of the piles circular in plan and grouped, 

under steady vertical vibrations, and soil reaction on foundation side surfaces.  The soil is 

simulated by an elastic inert medium that is described by manifold infinitely thin layers.  Thus, 

the task of vertical vibrations of the infinite plate is solved, and the authors add and specify the 

results of Nuzhdin et al. (2005) and Kolesnikov et al. (2014) for the determination of stiffening 

and damping characteristics of the system, with due regard to the mutual position of circular cuts 

(see schematic in Figure 1), including the ones which have not been considered yet.  
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Figure 1.  Schematic of position of circular cuts in the vibrating thin plate. 

 

2 CURRENT APPROACH FOR THE ONE CUT 

First, for the following analysis of the results, let us consider the task of warping axisymmetrical 

vibrations of an infinite thin layer with one circular cut with radius r0 (Figure 1а) solved in 

Baranov (1967).  In this case, the equation of elastic medium motion, with no volumetric forces 

in the cylindrical system of coordinate ( , , )r t  is written as:  
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with the boundary condition on the contour. 

 0 0, , i tw r t w e                                                                    (2) 

Here, ( , , )w w r t  is the motion along the axis z;   is density;   is Lame coefficient.  We 

assume, basing on the deformation character near the boundary, that all points remain on their 

rights during the vibrations (r, θ = const), and the distance between them does not change. 

Only tangential stresses act on the circular cut contour. 
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Eq. (1) and (2) are solved by the partition method, and the solution can be presented as  
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where / /k    , (1)

nH , (2)

nH  is the first and second kinds Hankel function, whereas 
nA , 

nB , 

nC , 
nD  are the constant factors to be found. 
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It follows from the condition that only diverging waves take place when the plane with one 

cut is considered, and from the axial symmetry condition that 

(2)

0 0 ( )i tw e D H kr                                                                 (5) 

where  
(2)

0 0 0 0( )D w H kr                                                              (6) 

Since only tangential stresses Eq. (3) act on the circular cut contour, they are reduced to the 

resultant for the single thickness layer 
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3 NEW METHOD FOR SEVERAL CUTS 

In Nuzhdin et al. (2005), under consideration are the warping vibrations of the layer with two 

circular cuts with radius r0; cut centers are within 2mr0 or m diameters from each other, m > 1 

(schematic in Figure 1b), under the condition of symmetry on the line crossing the right 

connecting the cut centers perpendicularly in the point rg = mr0 

0/),,cos/(  ntrw g
, 2/2/                                               (8) 

Solution of the tasks Eq. (1), Eq. (2), Eq. (8), for example, for the left cut is found in the form 

of Eq. (4) in two codomains:  
(2)
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for 
0rr  , 2/2/  , D0 coincides with Eq. (6).  Here and below, opposite to Nuzhdin et 

al. (2005), where N = 2, the solution is considered in the general form, and later N was 

determined by test calculations. 

Assuming that the stress value along the cut contour at 0 / 2    is measured linearly 
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the resultant is found as  
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Opposite to Eq. (7), in the right part of this equation, there are additive terms that include the 

effect of the second cut.  

Generalization of the result for the case of warping vibrations of the layer with circular cuts 

which centers are located on the right within 2mr0, m > 1 from each other (schematic in 

Figure 1c) permits describing the resultant for the inner cut by the expression  
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whereas in the case of the inner cut ordered in accordance with the schematic of Figure 1d, the 

resultant is described by the expression  
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Let us add the results by the expressions describing the resultant for the boundary (not corner) 

cut (schematic in Figure 1d)  
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and for the corner cut 
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Generalizing the obtained results we have, according to Kolesnikov et al. (2014) 
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here Jn, Yn is the first and second kind Bessel function. 

Let us present the reactions of single-thickness layers applied to the foundation side surface 

in the general form for six variants under consideration  
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where 
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2w jS  are the real and imaginary dimensionless components 
w jS , which can be 

presented for j = 0,1,2,3 as 
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In Kolesnikov et al. (2014), while determining C, the authors considered the solutions with  

N = 2, which gave satisfactory results for 
0 1kr   and low m.  But 

0 1kr   is possible, for 

example, in the case of the pile foundations under the machines with dynamic loadings, thus it 

was found experimentally that the necessary accuracy is reached at N=4, which is later used in 

our researches. 

It follows from the presented solution of the task of the vibrating layer with one or more cuts 

that the dynamic stiffnesses 
wjS  are described by the complex functions depending on vibration 

frequency , sole size, as well as on medium density  and stiffness .  Using asymptotic 

expansion 
1w jS , 

2w jS , we have that for the frequency   0, dynamic stiffnesses tend to vanish.  

Reactions are ahead of respective motions by temporal ranges j, which are determined as 

2 1( / )j w j w jarctg S S  , whereas the motion amplitudes can be evaluated from the ratio 
2 2 0,5
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According to Baranov (1967), common practical cases are 
0 1kr  , thus for low 

0kr , the 

formulas for 
1w jS , 

2w jS  are found for j = 0,1,2,3: 
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which we add by the relations for the boundary and corner cuts according to the schematic in 

Figure 1, d (for j = 4,5)   
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and then 
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It follows from the presented results that, independently on the distances between cut centers, the 

reactions for different kr0 are ahead of the respective motions by practically the same temporal 

range; their values coincide with the ones obtained for one cut case.  Analysis of the formulas for 

the amplitudes gives that the increasing distance between the cuts (m is rising) results in the fast 

reduction of their mutual influence.  For example, in the case of the inner cut, ordered as is shown 

in Figure 1, d, which is the most influenced by the neighboring ones, amplitude variation is about 

6% at m = 2, whereas at m = 3 it is only 0.25 % as compared to one cut.  Comparing the reactions 

on the cut contours regarding their mutual position, we find that at m = 2, the boundary cut 

amplitude is higher than the inner cut amplitude by 1 %, whereas the amplitude of the corner cut 

is 3 % higher. 
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Figure 2.  1wS (а) and 2wS (b) for one (line 1) and inner cuts at m = 2 (line 2), m = 3 (line 3). 

 

Illustrating varying 
1wS  and 

2wS  within the range 0kr01, Figure 2 shows the graphs of real 

and imaginary dimensionless components of the dynamic stiffnesses 
wS  at the vibration of the 

layer with one cut and inner cut located in the group as shown in Figure 1,d for m = 2 and m = 3.  

It follows from the presented data that, when the piles are grouped, the maximal mutual 

influence is observed at m = 2 – variation of 
13wS  as compared to the values obtained for one cut 

may reach 14 % at 
0 1kr  ; but as m = 3 – this value reduced down to 1.5 % within the whole 

range of kr0.  The difference between 
20wS  and 

23wS  at m = 2 does not exceed 1.5 %, but at m = 3, 

it is practically absent. 

Note in conclusion that analytical expressions were found when the task of vertical vibrations 

of the infinite plate with circular cuts was solved, which permit performing engineering 

calculations to determine the stiffness and damping of the pile foundation, as well as the 

coefficients of variation of the dynamic stiffnesses regarding the pile position.  It is demonstrated 

that as the piles are distanced essentially, their mutual influence is minimal or zero, which permits 

using the amplitude-frequency characteristics of an individual pile.  The results are in good 

agreement with the data presented in (Guz et al. 1974, Pyatetzkij et al. 1993) and permit 

specifying the evaluations of the pile foundation characteristics under dynamic loadings.  
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