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Observed nonlinearities in frictional and brittle solids such as concrete, rocks, 
ceramics, and some composites arise mainly due to the nucleation and propagation of 
microvoids and microcracks.  Microcrack formation, propagation, and coalescence 
damage the material and renders it more compliant.  Microdefects and cracks are also 
usually irreversible and cause strong anisotropy in the response to loads.  This paper 
presents a damage mechanics model to capture material anisotropy and damage under 
multiaxial stress states for proportional and fatigue type loadings.  The theory is cast 
within the generally accepted principles of thermodynamics with internal variables 
where the dissipation inequality is invoked to develop loading surfaces.  Flow rules for 
the onset of inelastic deformations is provided and specific damage laws are proposed.  
The model extension to the cyclic and fatigue type loading is presented and numerical 
results are provided with comparison to the available experimental data. 
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1 INTRODUCTION 

There are generally two dominant types of irreversible changes that can take place in brittle and 

frictional solids such as rocks, concrete, ceramics, and some composites.  First is the nucleation 

and propagation of microcracks and microvoids that tend to destroy material bonds and render the 

solid damaged.  This pattern usually takes place under zero or low lateral pressures.  Examples 

where the crack formations become the main and overriding causes of material inelasticity are 

uniaxial, biaxial, and triaxial extension load paths.  The result is a more compliant material 

behavior reflected in a reduced cross-sectional area to resist applied loads and a reduced stiffness 

due to the destruction of material bonds.  The failure mode can take the form of macrocracks after 

the coalescence of smaller cracks forming a discrete or a fault line.  The second mode of 

irreversible microstructural changes that could occur is when the solid is under large confining 

pressure such as the case under triaxial compression.  The presence of confining pressure inhibits 

or delays the formation of microcracks, leading to observed enhancement in strength, ductility, 

and material stability.  Permanent deformation with negligible or small loss of stiffness is 

observed under this scenario.  This paper presents a damage mechanics approach to the modeling 

of brittle solid inelasticity due to the formation of microcracks and microvoids.  Permanent 
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deformations arising from inelastic flow and void closure in the present of conforming pressure is 

beyond the scope of this work and can be found elsewhere.  

Various fields of damage mechanics have been introduced in the literature to model the 

effects of cracking and damage on the mechanical properties of the materials (Saboori et al. 2014, 

Wen and Yazdani 2008, Yazdani and Karnawat 1996).  To provide a rational and physically 

relevant formulation, the present theory is cast within the general theory of continuum 

thermodynamics with internal variables where the dissipation inequality is provoked to obtain a 

bounding surface, interpreted as a damage surface.  The damage surface acts in the same way as 

the plasticity surfaces do in the classical theories of plasticity.  For the onset of inelasticity, the 

state of stress must be on the damage surface as the necessary condition.  The sufficiency 

condition then is determined from the loading path requiring additional energy to the system. 

 

2 GENERAL THEORY 

Considering a stress space formulation and considering small and isothermal deformations, the 

Gibbs free energy, G(σ, k) can be presented as: 

                                                          𝑮(𝝈, 𝒌) =
𝟏

𝟐
𝝈: 𝑪(𝒌): 𝝈 + 𝝈: 𝜺𝒊(𝒌) − 𝑨𝒊(𝒌)                                             (𝟏) 

where, the stress tensor is given by σ, k as a scalar parameter indicating the cumulative damage, 

C is the current compliance of the material, ε
i
 represents the inelastic component of the strain, and 

A
i
 signifies the inelastic free energy of microcrack formation.  The dependence of the compliance 

(flexibility) tensor on the state of damage allows the formulation to model the continuous 

degradation due to crack formations.  The tensor contraction operation is noted as “:” in Eq. (1).  

The compliance tensor can be decomposed into initial flexibility of the undamaged solid plus the 

added flexibility caused by damage as C(k) = C
0
 + C

C
(k), where C

0
 represent the undamaged 

materials compliance and C
C
 is the added flexibility due to energy dissipation and cracking.  With 

this, the total strain tensor can be decomposed as shown by Eq. (2): 

                                                                 𝜀 = 𝐶0: 𝜎 + 𝐶𝑐(𝑘): 𝜎 + 𝜀𝑖(𝑘)                                                             (2) 

It is customary to distinguish between cleavage cracking mode caused by tensile stress states 

and those that occur under compression loads in brittle materials.  The first mode is similar to the 

mode I cracking in fracture mechanics studies, whereas the second mode is caused by the 

combined action of shear sliding and crack opening.  These are shown schematically in Figures 1 

and 2 (Yazdani 1993).  To reflect these damage modes, in an uncoupled approach, into the 

formulation, the added flexibility compliance is decomposed further into two parts as C
C

I and C
C

II 

such that C
C
(k) = C

C
I + C

C
II. Similar to any nonlinear theory, the solution to final equilibrium 

state would require incremental approach.  To accommodate this we assume that linear damage 

rule can adequately be used for the damage onset and that the resulting damage can be addressed 

using the damage response tensors as: 

                                                             𝐶𝐼
𝑐̇ = �̇�𝑅𝐼                  𝐶𝐼𝐼

�̇� = �̇�𝑅𝐼𝐼                                                                (3) 

where, the super-dots indicate time rate of change.  Damage response tensors RI and RII are 

fourth-order tensors that reflect the directions of damage.  If the response tensors are postulated to 

be isotropic, then the formulation would predict isotropic deformation.  In most practical cases 

this is not true.  Cracking is mostly preferential leading to strong anisotropic behaviour.  Any 

comprehensive formulation should thus aim at postulating response tensors that are close to the 

physics of crack formation and its directionality.  It is further assumed that damage is irreversible, 



Resilient Structures and Sustainable Construction 

 

3 

i.e. �̇� ≥ 𝟎. Using Eq. (1) through (3), and integrating, the general form of the damage surface is 

represented as Eq. (4): 

𝛹(𝜎, 𝑘) =
1

2
𝜎+: 𝑅𝐼: 𝜎+ +

1

2
𝜎−: 𝑅𝐼𝐼: 𝜎− + 𝜎: 𝑀 −

1

2
𝑡2(𝜎, 𝑘) ≥ 0                               (4)  

Here, the positive and negative cones of the stress tensors are denoted by σ
+
 and σ

-
; 

respectively and where, M is the inelastic response tensor for the deformation. The scalar 

function, t(σ, k) is identified as the damage function and must be determined from experiments. 

 

 
 

Figure 1.  Microcracks nucleation pattern under uniaxial tension. 

 

 
 

Figure 2.  Microcracks nucleation pattern under uniaxial compression. 

 

3 DAMAGE EVOLUTION AND DAMAGE FLOW RULE 

For the damage to take place, the state of stress must satisfy the damage surface for which ψ = 0. 

This constitutes the necessary but not a sufficient condition.  For a state where ψ < 0, the stress 

state is elastic and  𝑘 ̇ = 0.  The condition of loading and unloading can then be formally stated 

below by Eq. (5): 

𝛹 = 0 ,
𝜕𝛹

𝜕𝜎
: �̇� > 0     →      �̇� > 0                                                                        (5) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     �̇� = 0 

To progress further specific forms of damage response tensors must be postulated.  For 

isotropic processes, the R tensors should be set to be proportional to a 4
th
-order isotropic tensor.  

For anisotropic formulation, we propose the following anisotropic form that could be used to 

capture many of the salient features of brittle solid inelasticity in multiaxial tensile stresses.  Due 

to allocated space, only tensile stresses are considered.  The proposed response tensor RI is given 

as Eq. (6) (Yazdani 1993): 

                                                            𝑅𝐼 =
𝜎+⨂𝜎+

𝜎+:𝜎+ − 𝛼(𝐼 − 𝑖⨂𝑖)                                                                         (6) 

Here the second order identity tensor is given by i, and I is the 4
th
-order identity tensor.  The 

symbol ⨂ reflects tensor product operation.  In fatigue type processes, the damage function t (σ, 

k) is expressed as the product of three functions given by Eq. (7) (Saboori et al. 2015): 
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                                                            𝑡(𝜎, 𝑘) = 𝐿(𝜎)𝐹(𝑛)𝑞(𝑘)                                                                           (7) 

Here L(σ) reflects a strength function, F(n) signifies a strength reduction function, and q(k) 

identifies a shape function.  The concept of loading-unloading sequence and fatigue is illustrated 

in Figure 3 where a schematic monotonic loading and a fatigue failure state is shown.  It is known 

that during fatigue processes, a material could fail at much lower stress level depending on the 

frequency of the load, level of loading, the mean stress, and the number of cycles.  To correlate 

with the material strength under proportional loading, the shape function presented in Eq. (7) 

should be set to approach unity for the monotonic limit state.  The inclusion of the parameter “n”, 

representing the number of cycles, allows modeling of fatigue behavior of the material where 

failure occurs at levels below limit state under monotonic loading.  Different forms of function 

F(n) have been reported in the literature.  Here we propose a simple power law as given by Eq. 

(8): 

 

 

Figure 3.  Schematic representation of stress-strain diagram under fatigue and monotonic loading. 

𝐹(𝑛) = 𝑛𝐴                                                                           (8) 

where, A is regarded as a material parameter.  A new form of the strength function is proposed 

below that would provide a modeling tool for anisotropic strength reduction as Eq. (9): 

L(σ) =  [
σ:S

tr(σ)
]h                                                                             (9) 

where, tensor S is the preferential strength tensor, “tr” indicates the trace operator, and h is a 

material parameter.  The Strength tensor S is expected to reflect strength anisotropy as seen in 

engineering materials such as composites where the strength in the direction of fibers is much 

higher than other directions.  In concrete, due to statistically homogenous distribution of 

aggregates and pastes, the initial strength is usually isotropic.  A possible form of the strength 

tensor S is suggested here as S = Ft
1
 q

1
 ⨂  q

1
 + Ft

2
 q

2
 ⨂  q

2
 + Ft

3
 q

3
 ⨂  q

3
, where q

i 
are the eigen 

principal vectors and Ft
i
 are the respective uniaxial strength in the directions of “i”, with i = 1, 2, 

3 (Saboori et al. 2015). 
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Figure 4.  Failure surfaces for monotonic and fatigue loading in biaxial stress space. Data by Smith and 

Pascoe (1989).  

 

 
 

Figure 5.  S-N curve for woven fabric composite under biaxial fatigue loading with stress ratio of 1. Data 

by Smith and Pascoe (1989). 

 

The effect of Eq. (8) on the loading or damage surface is shown in Figure 4 where the limit 

surface is shown collapsing inward as the number of cycle increases.  This is in agreement with 

experimental records.  The experimental results of Smith and Pascoe (1989) are compared with 

the theoretical results utilizing the simple form of Eq. (8) for different values of n.  Uniaxial 

strength of 250 MPA, A = 0.94, and h = 1 were used.  In spite of the simple form of the Equation 

that are used, the salient features are nicely captured.  The S-N curve for equal biaxial tensile 

stress path for woven composites is shown in Figure 5 and is compared with the experimental 

work of Smith and Pascoe (1989).  It can also be seen that the model captures the salient feature 

of the behavior with reasonable agreement. 

 

4 CONCLUSION 

Damage Mechanics is relatively a new field to structural engineers.  However, as is shown in this 

paper, the nonlinear behaviour of brittle like materials can be modelled utilizing the first 
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principles of mechanics and thermodynamics and therefore eliminating curve fitting approach for 

the constitutive modelling.  Assuming small deformations, that is appropriate for brittle solids, 

strain decomposition into elastic, damage, and inelastic strains is carried out.  The dependence of 

the compliance tensor on accumulated damage allows the theory to model the nonlinear and 

anisotropic response of the material.  The general form of the damage surface for monotonic 

loading is provided.  To extend the model for fatigue like loading, the monotonic damage 

function was altered into the product of three functions that included a strength reduction 

function, a softening function, and a shape function.  A power law for the softening function was 

proposed and a new form of anisotropic strength function was given.  The model prediction was 

compared with experimental results of woven composites with reasonable arrangement. 
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