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The average spacing of primary cracks in a reinforced concrete (RC) member greatly 
influences its in-service behavior, especially with regard to stiffness and average crack 
width.  Accurate predictions of the average crack spacing are therefore crucial for 
satisfying serviceability requirements in RC structures.  This is particularly the case 
when relying on analytical models that treat cracks discretely rather than in a smeared 
fashion.  Popular code-based models for primary crack spacing are often wildly 
inaccurate and may lead to poor predictions of in-service behavior.  In this paper, the 
problem or primary crack formation is approached from a stiffness perspective.  The 
proposed model is based on the results of several experimental tension stiffening 
studies in the literature, as well as a previous numerical study dealing with the effect on 
stiffness of non-plane deformation in the neighborhood of primary cracks.  The 
proposed model is compared to some popular code-based models and is shown to better 
predict average crack spacing for a wide variety of beams, slabs, and tension members. 
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1 INTRODUCTION 

In the plane of a primary crack, any tension force is carried by the reinforcement, which develops 

a strain of εs2 = N/(EsAs), where N is the tension force and Es and As are the elastic modulus and 

cross-sectional area of the reinforcement bar, respectively.  Under the action of bond, some 

portion of the total tension force is gradually transferred to the surrounding concrete, and at a 

certain distance away from the plane of the crack (called the transmission length Lt), a condition 

of strain compatibility is achieved between the reinforcement and the concrete.  At this point the 

strain in both materials is given by εs1 = εc1 = N/(EsAs + EcAc), where Ec and Ac are the elastic 

modulus and cross-sectional area of the concrete, respectively.  The distribution of bond stress τb 

over the transmission length Lt may be taken to be constant under service loads, leading to a 

linear variation of strain in both materials.  This assumption is broadly supported by various 

experimental studies in the literature (Scott and Gill 1987). 

 Considering a segment of the tension zone of a reinforced concrete member located between 

adjacent primary cracks of spacing s, there are two possible scenarios that must be considered.  If 

s/2 ≥ Lt (Fig. 1a), a condition of strain compatibility occurs over at least some portion of the 

segment and it may be shown that the average reinforcement strain εsm in the segment is given by: 
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where n = Es/Ec is the modular ratio and ρ = As/Ac is the reinforcement ratio.  On the other hand, if 

s/2 < Lt (Fig. 1b), the average reinforcement strain in the segment is given by: 
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Considering Eq. (1) and (2), it is possible to determine the value of Lt for any RC tension 

member based on the known locations of its primary cracks, the loads at which they form, and the 

overall load-deformation response of the member. 

 

 

Figure 1.  Reinforcement and concrete strain in (a) a long segment and (b) a short segment. 

 

2 CHARACTERIZING TRANSMISSION LENGTH 

2.1    Basic Transmission Length 

Before the formation of primary cracks, the cross-sections of a RC member remain plane under 

bending and axial loads, provided that the member is free of any abrupt changes in loading and 

geometry.  After cracking, however, there is a redistribution of internal actions in the member and 

the highly localized bond forces acting along the reinforcement-concrete interface induce a 

warping effect in the cross-sections in the neighborhood of the primary cracks. 

A study by Murray et al. (2016b) highlighted the significant influence of this non-plane 

deformation on the stiffness of RC tension members.  Using a finite element approach, the 

authors introduced an effective reinforcement ratio ρef, which describes the axial rigidity of a RC 

tension member for the special case of perfect bond (i.e. zero slip along the reinforcement-

concrete interface) and takes into account the effect of non-plane deformation near the primary 

cracks.  

Based on the assumption of constant bond τb and considering the effective reinforcement ratio 

ρef defined by Murray et al. (2016b), it is possible to determine the transmission length associated 

with the special case of perfect bond, which represents with the greatest tension stiffening effect.  

For the case of perfect bond, this transmission length is called the basic transmission length and is 

found to be: 

    nndL 185.1135.1409.0691.1btb                          (3) 

where db is the reinforcement bar diameter. 
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2.2    Evaluating Lt from Tension Stiffening Experiments 

In Section 2.1, the transmission length was defined for the special case of perfect bond, which is 

assured during the earliest stages of initial loading by chemical and micromechanical bonds at the 

interface between the reinforcement and the concrete.  Murray et al. (2016b) showed that very 

soon after initial loading, the condition of perfect bond is violated as slip is facilitated by the 

formation of internal cracks, splitting cracks, and the crushing of concrete in front of the 

reinforcement lugs. This results in a decay of the tension stiffening effect with increasing load. 

One way of modeling this behavior is to introduce a scalar damage parameter that modifies Lt 

according to the degree of damage at the reinforcement-concrete interface.  Thus, where damage 

occurs, the transmission length Lt may be expressed more generally as: 

  1tbt LL                                    (4) 

where ζ (0 ≤ ζ ≤ 1) is a scalar damage parameter.  The case of ζ = 0 represents the condition of 

perfect bond, for which the maximum tension stiffening effect is achieved.  For ζ = 1, damage to 

the reinforcement-concrete interface is so extensive that the tension stiffening effect is exhausted. 

To characterize the evolution of ζ, twenty-one tension-stiffening tests from five separate 

studies in the literature have been considered. For each of the tests, Lt was determined at several 

load levels according to Eqs. (1) and (2).  Where possible, the precise positions of primary cracks 

at each load level were taken into account in the analysis to provide the most accurate estimate of 

Lt; however, in some cases the reported average crack spacing was simply used.  It is then 

straightforward to determine corresponding values of ζ from Eq. (4) for each of the tests. 

 

 

Figure 2.  Evolution of scalar damage parameter ζ with increasing load. 

 

The evolution of ζ with increasing load (characterized by εs2) is shown in Fig. 2. For εs2 less 

than about 150×10-6, no increase in the transmission length compared to the basic transmission 

length is detected.  This is consistent with findings by Murray et al. (2016b), in which the onset 

of interface damage was shown to occur almost immediately after the first application of load.  

Thereafter, damage increases rapidly and is seen to gradually approach a value of ζ = 1 near the 

yield point of the reinforcement. A curve of best fit is given in Eq. (5) for all εs2 > 150×10-6. 
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  6
s2 101501150exp1                               (5) 

Despite these twenty-one tests representing a reasonably large range of reinforcement ratios 

(ρ = 0.0099–0.0309), bar diameters (db = 12–19.5 mm) and concrete compressive strengths  

(fcm = 21.6–81.0 MPa), there is little apparent influence of any of these parameters on ζ.  A 

similar finding was made by Murray et al. (2016b), although the damage parameter in that study 

had a slightly different definition.  For the tests considered in this paper, 92 percent of all data 

points fall within +/– 0.1 of Eq. (5). 

 

3 DETERMINING AVERAGE CRACK SPACING 

3.1    Relationship Between sm and Lt 

Primary cracks form when the concrete stress at a particular cross-section reaches the tensile 

strength of the concrete (i.e. σc = ft).  New primary cracks are therefore unlikely to occur within a 

distance of Lt from any existing primary crack, since the concrete stress and strain in these 

locations is relatively small (Fig. 1a).  This behavior leads to the result that the final average 

crack spacing sm must be greater than Lt and less than 2Lt.  This is because for any pair of primary 

cracks spaced at a distance greater than 2Lt, a new crack can always form between them. 
In the literature, the ratio sm/Lt is often taken to be 4/3, though little justification is ever 

provided for this assumption.  The relationship between sm and Lt is governed by what is 

essentially a problem of random space-filling in one dimension.  Rényi (1958) solved an 

analogous problem concerning cars of unit length parking in a random fashion along a street, and 

proved that the average density of cars should approach a value of m ≈ 0.7476 for an infinitely 

long street, where m is called Rényi’s parking constant.  As it relates to cracks in reinforced 

concrete, the ratio of sm/Lt may be shown to be 1/m ≈ 1.3376 for an infinitely long member. 

For members of finite length, Rényi (1958) suggests an approximation of: 
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where L is the total length of the member within which primary cracks are likely to form, and Lt 

is the transmission length at the time of cracking.  Values of L/Lt fall within the range of about 

10–20 for the RC members analyzed in Section 4, corresponding to a ratio of about sm/Lt = 1.37.  

However, L/Lt may be a small as 5 for short tension members tested in the laboratory  

(sm/Lt = 1.43) and as large as about 100 (sm/Lt = 1.34) for long structures such as pavements. 

The application of Rényi’s proof to the problem of cracking in reinforced concrete has (to the 

best of the authors’ knowledge) not before been identified.  The ratios given by Eq. (6) have been 

confirmed by the authors following several hundred thousand computer simulations for various 

L/Lt.  Incidentally, these simulations also confirm predictions of the statistical variance of the 

crack spacing by Dvoretzky and Robbins (1964) and Mannion (1964).  

 

3.2    Expressions for sm 

At the time of cracking, the strain in the bare reinforcement εs2,cr may be shown to be: 
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Then, combining Eq. (4) and (5), and assuming sm/Lt = 1.37, an expression for sm is found to be: 
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where ft is the effective tensile strength of concrete.  In the short term, provided that little 

shrinkage occurs prior to first loading, the term ft/Ec may be taken as a constant value of  

ft/Ec ≈ 100×10-6, regardless of the concrete strength grade; in the long term, or where significant 

shrinkage occurs prior to first loading, better results are obtained by using ft/Ec ≈ 60×10-6. 

An alternative approach is to consider the smallest possible crack spacing that will allow an 

additional crack to form at the center of a short segment.  Based on the strain variation in Fig. 1b, 

an expression is determined for the concrete stress mid-way between two adjacent primary 

cracks.  Then, considering the expressions for Lt and ζ, and again assuming that  

sm/Lt = 1.37, a maximum value for the concrete stress is found by differentiating with respect to 

εs2.  When the concrete stress is set equal to the tensile strength of the concrete, the corresponding 

crack spacing s must be equal to smax = 2Lt.  Thus the final average crack spacing is found to be: 
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4 VALIDATION OF MODEL 

The proposed model is validated by comparing its predictions of sm to 83 RC members tested in 

the literature.  The reinforcement ratio ρ used in Eqs. (8) and (9) is based on a similar effective 

area of concrete to that suggested by BSI Eurocode 2 (1992, 2004) and the CEB-FIP 1990 Model 

Code (CEB 1993).  That is, the height of the effective area of concrete surrounding the 

reinforcement is taken to be 2.5(h – d).  However, for widely spaced bars (such as in slabs), an 

additional restriction is placed on the width of the effective area of concrete, taken in this paper to 

be the lesser of the bar spacing sb and 15db. 

Table 1 compares the average ratios of the predicted average crack spacing to the measured 

average crack spacing for the proposed model and three popular code-based models. 

 
Table 1.  Comparison of proposed model to three popular code-based models. 

Study 
Specimen 

Types 

Number of 

Specimens 
Eq. (8) Eq. (9) 

EC2 

(1992) 

EC2 

(2004) 

MC90 

(1993) 

Rizkalla et al. (1983) UT 34 1.07 1.05 1.16 1.20 0.62 

Frosch et al. (2003) S 10 1.02 0.94 0.65 0.87 0.79 

Gilbert and Nejadi (2004) B, S 12 0.98 0.97 0.90 1.05 0.92 

Dawood and Marzouk (2008a,b) UT, BT 6 1.03 1.02 1.36 2.70 0.95 

Castel et al. (2014) B 5 1.00 0.99 0.73 0.94 0.84 

Murray et al. (2016a) B 8 0.92 0.90 0.67 0.88 0.75 

Murray et al. (Unpublished) B 8 0.94 0.90 0.63 0.89 0.74 

  Average 1.02 0.99 0.95 1.17 0.75 

  COV 18% 19% 32% 42% 24% 

B – beams; S – slabs; UT – uniaxial tension members; BT – biaxial tension members 

 

5 CONCLUSIONS 

The proposed model is able to predict final average crack spacing sm accurately while being 

comparably simple to the popular code-based models considered here.  The two alternative 

expressions for the estimation of sm in Eqs. (8) and (9) appear to yield almost identical results. 
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Compared to the three code-based models of primary crack spacing, the proposed model is 

considerably more accurate and consistent in its predictions.  The proposed model will allow 

better predictions of in-service behavior of RC structures to be made. 
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