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Present cable theory which formulated from force balance equation of single cable 
under self-weight and forms a catenary shape of deflection, that is nonlinear; therefore 
to determine displacement, deformation and tension forces of the cable and cable-
stayed structures we need to provide some additional assumptions of cables and use 
iteration calculation. This paper presents a new method for static analysis of cable-
stayed structures subjected to in-plane loading. By combination of the Gaussian 
Extreme Principle method and virtual displacement principle, authors to formulate and 
solve nonlinear equation system of cable-stayed structures, which ensured forces 
balancing as well as continuity of displacements and deformations of structures. This 
method allows for simultaneous determination of displacement, deformation and 
internal forces of cable-stayed structures without any other additional hypothesis, 
which is different from present cable theory. 

Keywords:  Non-linear analysis, Gaussian extreme principle, Virtual displacement, 
Numerical analysis. 

 

  

1 INTRODUCTION 

In the analysis of cable-supported structures such as suspension or cable-stayed bridges to date 

still use the classical theory of flexible cable which forms the deflection shape of catenary or 

parabola when cable subjected to uniformly distributed load along cable length or over the span.  

The classical theory of cable formulated from force balance equation of single cable, which is 

exact and implicit formulation; therefore to determine displacement, deformation and tension 

forces we need to provide cable dip or horizontal tension force and use iteration calculation as 

stated in literature (Pugsley 1957) and (Podolny and Scalzi 1986).  Due to complexity of cable 

calculation, in the analysis of cable-stayed bridges simplifications has been made to formulate 

and solve the equations.  Models of tension-only truss member with equivalent modulus (Podolny 

and Scalzi 1986, Walther et.al. 1988, Troisky 1977) or equivalent cross-sectional area 

(Petropavlovsky 1985) to account for cable sag has been use by researchers as assumptions for 

linearization in simplified analytical method.  In last few decades, researchers have been used 

basic flexible cable element of catenary shape or parabolic shape to develop finite element solver 

for cable structures or cable-stayed structures.  Attempts were made to formulate stiffness matrix 

of cable element that satisfy large displacement field of cables during loading of structures. 

In this paper, a new method for static analysis of plane problem of cable-stayed structures is 

presented.  Structures are modeled by finite elements with cable described by segmented tension 
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stress elements; columns and beams are described by bending elements.  Gaussian Extreme 

Principle method and principle of virtual displacement are applied to formulate the equations of 

problem, and then nonlinear programing solves them.  This method is well suited for plane static 

analysis of cable-stayed structures as indicated hereafter, allows for simultaneous determination 

of displacement, deformation and internal forces of cable-stayed structures without any other 

additional hypothesis. 

 

2 FORMULATION OF PROBLEM 

2.1    Formulation for Single Inclined Cable 

Consider a single cable in cable-stayed structures, static loading pattern for cables in these types 

of structures can be one or combined of the following: self-weight load, concentrated loads, 

prestressed forces and temperature variation.  In calculation, one can divide cable into successive 

tension-only truss segments, which connected by frictionless pins as shown in Figure 1; 

distributed self-weight load is converted to concentrated load at connected points of segments. 

 

 
a) Single cable and equivalent segmented. 

 
b) Movement of cable element. 

 

Figure 1.  Inclined single cable subjected to self-weight. 

 

In the analysis, we accept the following conditions: (1) cable is completely flexible with 

uniform cross-sectional area, no bending effect occurred in the cable; (2) cross-sectional area of 

cable remains constant during deformation; (3) during deformation, stresses only develop in 

direction normal, and are uniformly distributed, to cross-sectional area. 

According to Gaussian Extreme Principle method (Cuong 2005), constraint function of a 

deformable mechanical structure considers all components – external/internal forces, 

displacement /strain – of structure.  For Figure 1, constraint function can be formulated as: 

 
1 1

min
m n

i i i c j

i j

Z T l P v
 

     (1) 

where , ,i i iT l  respectively are tensile force, elongation strain and undeformed length of i
th
 

(i=1÷m) cable segment; ,c jP v  respectively are concentrated load and displacement of cable at 

point j
th
 (j=1÷n=1÷m-1); m  is number of segment.  Tensile force in i

th
 cable segment: 

  . A /i i i i iT EA E s l l    (2) 

where 
is  is deformed length of i

th
 cable segment, which can be determined as: 

   
2 2

* * * * * * * *

1 1 1 1 1 1 1 1; ; ; ;i i i i i i i i i i i i i i i i is x x y y x x u x x u y y v y y v                    (3) 
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In Eq. (3), ,i iu v  and 
1 1,i iu v 

 respectively denote displacement components at node i
th
 and 

node (i+1)
th
 in horizontal and vertical directions.  Condition for minimization of constraint 

function in Eq. (1) is its variational equal zero, 0Z  .  According to principle of virtual 

displacement, while taking variational of Eq. (1) ones consider 
i  independent with 

iT , and 
jv  

independent with 
cP , therefore: 

 
1 1

0
m n

i i i c j

i j

Z T l P v  
 

     (4) 

substitute Eq. (2) and (3) into Eq. (4) and taking partial derivative with respect to ,i iu v , 
1 1,i iu v 

: 

 
1 1

0 ; 0
m m

i i

i i i i c

i ii i i i

Z Z
T l T l P

u u v v

 

 

  
    

   
   (5) 

Let 
, ,; cos ; sin ;i i x i i i y i i c i cl l m l l l l P l q     , to get a system of nonlinear equations for 

cable with unknowns:  ,i iu v , 1 1,i iu v  .  These conditions are of force balance at all nodes of 

deformed cable.  Solving these equations for nodal displacements to determine deformed position 

of cables, utilize Eq. (2) and Eq. (3) to calculate tensile forces in every cable segment. 

 

2.2    Formulation for Beam and Column 

Let consider pylon and beam in the cable-stayed structures as deep beam.  In bending stage, the 

rotation of the beam’s cross section rotates due to bending moment and shear deformation as: 

 ;
.

x

Qdw
k

dx G A
      (6) 

where θx is the rotation due to moment M , γ is the shear deformation due to shear force Q, G is 

shear modulus of the beam’s material, A is the cross sectional area of the beam, k is shear 

coefficient. From Eq. 6, one can write the rotation due to moment as (Eq. 7): 

.
x

dy Q
k

dx G A
                                                                 (7) 

Let χ is the curvature of the beam’s deflection or bending deformation, ones have: 

 
2 2

2 2
; .x xd d d y d y dQd k
M EJ EJ EJ EJ

dx dx dx GA dxdx dx

  
 

    
              

     

 (8) 

According to Gaussian Extreme Principle method (Cuong 2005), constraint function for a 

beam of length l subjected to uniformly distributed load q can be formulated as in Eq. (9) and 

conditions for minimization of this function is written in Eq. (10) similarly, for cable structure. 

 

0 0 0

min

l l l

Z M dx Q dx qydx        (9) 

 

0 0 0

0

l l l

Z M dx Q dx q ydx          (10) 

In this study, mixed finite elements with unknown variables are deflections and first 

derivative of deflections at both ends, shear forces at both ends and at mid-point of elements for 
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bending structure (see Figure 2), were used; therefore, vector of unknown variables for each 

bending element is    1 2  1 2 1 2 3                       
T

i i
R w w Q Q Q  .  Deflection and shear forces of the 

element can be approximated by polynomial form as: 

              1 1 2 2 3 1 4 2 5 1 6 2 7 3;w N x w N x w N x N x Q N x Q N x Q N x Q         (11) 

with the interpolating functions of the element have form as: 

 

       

       

       

2 2

1 1 2 2

2 2

3 3 4 4

5 5 6 6 7 7

( ) 1 2 4 ; ( ) 1 2 4

( ) 1 1 4 ; ( ) 1 1 4

( ) 1 2 ; ( ) 1 1 ; ( ) 1 2

N x f x x N x f x x

N x f x x N x f x x

N x f x x N x f x x N x f x x

        

       

         

 (12) 

 

Figure 2.  Mixed finite element for bending structure with shear deformation. 

 

Denote ' " 2 2;a da dx a d a dx  , and we can get the matrix form of w  and Q , including their 

derivatives easily as: 

           1 2 3 4 5 6 70 0 0 ; 0 0 0 0w w R f f f f X Q Q R f f f R     (13) 

 
   

   

'' 2 2 '' '' '' '' ''

1 2 3 4

' ' ' ' '

5 6 7

0 0 0

0 0 0 0

w d w dx w R f f f f R

Q Q R f f f R

        

       

 (14) 

Substitute Eq. (13) and Eq. (14) into Eq. (6) and Eq. (8), ones get matrices of moment, 

rotation due to shear forces and rotation due to moment of an element as: 

             ''; ; '
kQ k k

M EJ EJ R Q R R w Q R
GA GA GA

    
 

          
 

 (15) 

Consider a bending element with length of x , from Figure 2 and account for above 

matrices, after some transformation lead to matrix form of equation for element: 

            
1 1

1 1

0; 1 7 . .
2i

Z x k
i EJ dx Q Q dx u P w

R GF
 

 

  
      

  
   (16) 

Set        
1 1

1 1

. .
2

e

x k
A EJ dx Q Q dx

GA
 

 

 
  

 
  , Eq. (16) can be rewritten as Eq.(17): 

            
1

e eA R P w R P w A


    (17) 

2.3    Formulation for Static Problem of Plane Cable-Stayed Structures 

Consider a typical simple cable-stayed structure as shown in Figure 3.  In the deformed stage of 

structure, pylon and beam only take bending and shear deformation, no axial deformation 
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occurred as their axial stiffness are very large, therefore they only take deflection in the direction 

normal to longitudinal axis. 

 

 

Figure 3.  Plane cable-stayed structure. 

To formulate equations of the structure, subdivide it into number of finite elements, convert 

all distributed loads to equivalent concentrated loads at end points of finite element. With stage of 

displacements and deformation of structure mentioned above, ones get constraint function of 

structure as: 

 

 

 

1 1 2 2

1 1 10 0

1

1 1 2 2

1 1 1 1 1 10 0

i ib b b

j jp p p

l ln n n

i i i i i i i i

i i i

beam

l ln n n n m m

j j j j j j j j ij ij ij c ij

j j j i j j

pylon ca

Z M dx Q dx P w P w

M dx Q dx P w P w T l P v

 

  

  



     

    

 
      

 

   

       min

bles



 (18) 

where , , ,b pn n n m  are number of beam elements, pylon elements, cables and segments on each 

cable respectively.  Continuity conditions between cables, beam and pylon at connected points 

must be satisfied for displacements and forces.   Condition for minimization of constraint 

function in Eq. (18) is its variational equal zero, 0Z  ; by taking variational operator with 

respect to unknown variables ( R ,
iju ,

ijv ), ones get system of nonlinear equations as (Eq. 19): 

 
1 1

1 1 1 1 1 1ij ij

0 1 7 ; 0; 0
u u v v

n m m n m m

ij ij ij c ij ij ij ij c ij

i j j i j ji ij ij

Z Z Z
i T l P v T l P v

R
 

 

     

       
           

       
       (19) 

2.4    Formulation and Solution of Nonlinear Programing Problem for Structure 

Plane static problem of cable-stayed structure lead to system of nonlinear equations as stated by 

Eq. (18), these equations can be solved by different methods.  In this study, authors use nonlinear 

programing method to solve the formulated equations as the constraintts of problem consisted of 

equality and inequality.  The objective function for problem is to minimize total strain energy of 

all cables in the structure.  The problem can be restated as to minimize 
2 2

1 1 10

s
2EA 2EA

dln n m
ij ij ij

i i j

T T l
d

  

 
   

 
    

subjected to: linear and nonlinear equality expressed by Eq. (18); nonlinear inequalities

 0 1 ; 1ijT i n j m     .  A computer code was written in MATLAB to solve the stated problem 

with assistant from fmincon function of Optimization Toolbox. 
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3 NUMERICAL EXAMPLE 

Consider a continuous double-span cable-stayed structure as shown in Figure 4.  Analysis with 

consideration of shear deformation were carried out by the computer code mentioned above, 

results are shown graphically in the Figure 4.  All force-balanced check is satisfied. Numerical 

results from presented example in this study have shown the correctness of the proposed method 

as well as accuracy of the procedure and program made by authors. 
 

  

  

Figure 4.   Cable-stayed structure in numerical example. 

 

4 CONCLUSIONS 

This paper briefly presents a new method for static analysis of cable-stayed structure subjected to 

in plane loading.  This method applies the Gaussian Extreme Principle method to formulate the 

equations of structure and solve the formulated problem by nonlinear programing.  The advance 

of this method is formulation can be made simply straight forward. The proposed method allows 

for static analysis of cable-stayed structure according to plane scheme with consideration of 

geometrical nonlinearity of cables as well as shear deformation effect in the bending element; 

additionally it allow for simultaneous determination of displacement and internal forces of 

structure without too much hypothesis as in traditional methods. 
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