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The objective of this study is to examine the relationship between battened built-up 
columns and frames about buckling.  The buckling strengths, buckling modes and 
bending moment of one bay - n stories frame with rigid beams are calculated by the 
energy method.  The results are compared with those of obtained by the Bleich’s 
formula and correct solutions.  Although the buckling strengths by Bleich agree fairly 
well with the correct values, it is shown that the strengths obtained by Bleich formula 
are neither the upper bound nor the lower bound.  And buckling strengths calculated by 
the energy method estimate the correct strength within 5% error when the value of 
stories n is more than 2.  Moreover, Bleich’s moment distributions correspond to those 
of obtained by the energy method. 

Keywords:  Built-up compression member, Flexural buckling, Energy method, 
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1 INTRODUCTION 

In this paper, battened built-up columns which have rigid batten plates are targeted, and the 

correct solution is obtained as buckling strengths of a frame with considering shrinkage and 

elongation of the column.  The relationships between the buckling strengths of the built-up 

compression member obtained by using the Bleich’s formula, the buckling strengths of the frame 

obtained by the energy method considering the shrinkage and elongation of the columns and the 

correct buckling strengths (Timoshenko 1961) were examined. 

Bleich calculated the buckling strengths of the built-up compression member based on the 

conservation law of energy.  Although it is widely known that the Rayleigh-Ritz method gives the 

upper bound of the buckling strengths, little is known about the relationship between the buckling 

strengths by Bleich and the correct buckling strengths.  In this paper, the bending moment 

diagram of the column is calculated by the energy method, and the influence of the governing 

parameter is considered from the viewpoint of buckling of the frame. 

 

2 ANALYTICAL WORK 

2.1    Problem Setting and Analytical Method 

The built-up columns to be covered in this study is the battened built-up columns shown in Figure 

1.  The analytical model is n stories frame which has rigid beams and the fixed column-base 
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shown in Figure 2.  This model corresponds to a half of the pinned end built-up column shown in 

Figure 1.  The built-up column has a batten plate at the mid-point of the column, and whose 

number of sections divided by plates is 2n.  There are cases where the number of interval divided 

by the batten plate is an odd number, but in this paper the case of an even number is targeted.  In 

Figure 2, E is the Young's modulus, Ic is the second moment of inertia of the column, Ac is the 

cross-sectional area of the column, h is the height of the frame, c is the story height, and b is the 

span length. 
 

 

 

Figure 1.  Battened built-up columns.           Figure 2.  Analytical model. 

2.2    Buckling Strengths of Built-up Columns by Bleich 

The buckling strengths 2Pcr of the built-up columns considering the shear deformation is 

expressed by Bleich (1952). 


















cb

g

g
cr

EI

c

EI

cb

l

EIl

EI
P

2412
1

1
2

2

2

22

2




 (1) 

In Eq. (1), E is the Young's modulus, la, lb and lc are the second moment of inertia of the built-

up columns, chord member and plate respectively, l is the member length, c is the distance 

between the plates, and b is the plate length.  The second moment of inertia Ig of the built-up 

column can be calculated by Eq. (2), where Ac is the cross-sectional area of the chord member. 
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Considering the correspondence of Eq. (1) to the analytical model of Figure 2 derives the 

relation l = 2h = 2nc, and substituting this relation and Eq. (2) into Eq. (1) and arranging it gives 

Eq. (3). 
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Assuming Ib = ∞ in Eq. (3) and normalizing the buckling strengths in Eq. (3) by Pe in Eq. 

(4), the non-dimensional buckling strengths p* of the built-up columns by Bleich is given by Eq. 
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(5).  Pe in Eq. (4) is the buckling strengths of columns whose length is c and fixed at both ends 

with movement of nodes.  In this paper, Eq. (5) is called “buckling strengths by Bleich”. 
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From Eq. (5), the non-dimensional parameters that dominates the non-dimensional buckling 

strengths p* are the value of 4Ic/Acb
2
 and the number of stories n.  The non-dimensional buckling 

strengths Pg/Pe in the case of not considering the shear deformation in Eq. (1) is obtained by Eq. 

(6).  Pg in Eq. (6) is the buckling strengths of the built-up compression member without 

considering the shear deformation. 
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2.3    Calculation of Buckling Strengths Using the Energy Method 

2.3.1    Assumption of column deflection 

In this section, the buckling strengths of the frame considering shrinkage of the column is 

calculated by using the energy method.  The analytical model is shown in Figure 3.  
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   (a)Deflection as a column.                  (b) Deflection as a frame. 

 

Figure 3.  Analytical model. 

 

The deflection of the column is expressed as the sum of the deflections:  v0 as the built-up 

column and the additional deflection vadd as the frame (refer to Figure 3(a) and 3(b)).  vadd.i is an 

additional deflection with respect to the column-base of the i story, and the lower right suffix “ i ” 

means that it is related to the i story.  vadd.i on the left side of Figure 3 relates to an odd number 

story, and vadd.i on the right side relates to an even number story. 
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2.3.2    Total potential energy ( and buckling equation 


Various amounts in the i story are calculated, the total strain energy U and the potential energy V 

of the external force are obtained.  By adding the strain energy and the potential energy of the 

external force, the total potential energy ( ) is given by Eq. (7). 





















n

i

ic

ci
iadd

n

i

ic

ci
iadd

ncn

i

ic

ci
iaddc

n

i

ic

ci
iaddc

nc

g

dxvvPdxvPdxvpdxvvEI

dxvEIdxvEIVU

1
)1(

.0

1
)1(

2
.

0

2
0

1
)1(

.0

1
)1(

2
.

0

2
0

''2''""4
2

1

"2
2

1
"

2

1

   (7) 

Buckling equation is derived based on the principle of minimum potential energy.  The 

condition for minimizing the total potential energy  is given by the Eq. (8). 
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From Eq. (8), the buckling equation is obtained as the determinant consisting of the elements 

of (n+1) × (n+1) which is equal 0.  The element can be represented by p*(≡P/Pe), Pg/Pe . Pg/Pe is 

given by Eq. (6).  

 

2.4    Buckling Strengths of Frame Considering Axial Shortening of Columns 

The following equation is the buckling strengths P of a frame with rigid beams, which is obtained 

by the buckling slope deflection method and the shrinkage and elongation of the column is further 

considered.  The symbols defined in this paper are used in the following equation. 
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z in the numerator on the right side of the above equation is calculated from the following 

equation.  In this paper, we call the buckling strengths calculated from Eq. (9) and Eq. (10) the 

correct buckling strengths. 
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In Eq. (10), m is the number of stories in the frame with pin supported at both ends, and there 

is a relationship of m = 2n and n is the number of stories in this paper.  Also, when the value of 

4Ic/Acb
2
 is 0 or ∞, the value of z is,  /m= /2n, the value of buckling strengths is EIc/c

2
 and 

EIc/4n
2
c

2
, and the value of the non-dimensional buckling strengths p* is 1 and /4n

2
. 

 

3 RESULTS AND DISCUSSION  

3.1    Analytical Variable 

The parameter that dominates the non-dimensional buckling strengths is the value of 4Ic/Acb
2
 and 

the number of stories n according to Eq. (5) and Eq. (10).  As the analytical parameters, 

calculation was performed by setting the number of stories n to 1, 2, 3, 5, 10, and changing the 

value of 4Ic/Acb
2
 from 0 to 1.  In the case of 4Ic/Acb

2
 = 0, the span b is large, so that the axial force 

of the column is small and buckling of a normal frame is considered without considering 
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shrinkage and elongation of the column.  And when 4Ic/Acb
2
 = ∞, the built-up compression 

member buckles as one column.  It is considered the upper limit of 4Ic/Acb
2
 value is about 0.5 for 

the battened built-up columns according to the past studies (Atushi et al. 2015). 

 

3.2    Non-dimensional Buckling Strengths p* - 4Ic/Acb
2
 Relationship 

In Figure 4 shows the relationships between 4Ic/Acb
2
 and the non-dimensional buckling strengths 

p*.  The relationships obtained by using the Eq. (9) and Eq. (10) (Described as “Correct Value” in 

Figure.), the energy method and the Bleich’s buckling formula expressed by Eq. (5) are indicated 

by solid lines, black circles and dotted lines, respectively.  In addition, the broken line shows the 

strengths when the built-up column buckles in a usual manner without considering the influence 

of the shear deformation of the battened built-up columns (Described as “Normal” in FIG). 

When the number of stories n equals 1, there is some difference between the correct value 

and the strengths by the energy method, but the difference decreases as the value of n increases.  
In addition, according to Eq. (5) as the built-up compression member, when the value of 4Ic/Acb

2
 

is small, the non-dimensional buckling strengths p* is evaluated larger than the correct value. As 

the value of 4Ic/Acb
2
 increases, the buckling strength is evaluated as smaller than the correct value. 

Figure 5 shows a comparison with the correct value.  Figures 5(a) and (b) show the results by 

Bleich’s formula and by the energy method.  According to Figure 5(a), when 4Ic/Acb
2
 equals 0, 

the value of Bleich /correct is 12/, and the value exceeds 1 when 4Ic/Acb
2
 is small.  Also, it 

becomes smaller than 1 when the value of 4Ic/Acb
2
 increases.  It means that the strengths by 

Bleich are neither the upper bound nor the lower bound.  When the value of n becomes large and 

the value of 4Ic/Acb
2
 becomes about 0.1 or more, it is observed that the buckling strengths by 

Bleich agree fairly well with the correct value. 

 

0.95

1

1.05

1.1

0 0.1 0.2 0.3 0.4 0.5

Energy method/Correct Value

4Ic/Acb
2

n = 2

n = 1

n = 3

n = 5 n = 7

n = 10

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5

Bleich/Correct Value

4Ic/Acb
2

n = 2
n = 1

n = 5n = 7n = 10

n = 3
n = 2

n = 1

P
2

12



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

p*

4Ic/Acb
2

Energy method

Correct Value

n = 1
 Bleich

Normal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

n = 5

p*

4Ic/Acb
2

 Bleich

Normal

Energy method
Correct Value

 

                     (a) n = 1                      (b) n = 5                  (a) Bleich’s formula.         (b) Energy method. 

        Figure 4.  Comparison of buckling strengths.           Figure 5.  Comparison with the correct value. 

 

According to Figure 5(b), buckling strengths calculated by the energy method estimate the 

correct value within 5% when the value of stories n is more than 2.  As the value of n increases, 

the buckling strengths by the energy method agree the correct value.  As is well known, the 

buckling strength by the energy method gives the upper bound. 

 

3.3    Bending Moment Distribution 
 

Figure 6 shows the bending moment distribution for n equals 5.  The value of 4Ic/Acb
2
 was 

calculated as 0.005, 0.05, 0.1, 0.25, and 0.50.  The bold solid line, thin solid line and dotted line 

in the figure are the bending moment M* of the column, the bending moment M0* calculated as a 

single column for the whole frame, and the bending moment assumed by Bleich.  The bending 

moment of the column base is taken as unit 1 (The horizontal axis is set to 1/2 in size only in 
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Figure 6(a)).  According to these figures, when 4Ic/Acb
2
 = 0.005, the inflection point is located 

between column base and top in all stories.  As the value of 4Ic/Acb
2
 increases, it is observed that 

the curvature is bent into a single curvature in order from the lower story to the upper story.  Also, 

it is observed that Bleich’s moment distributions correspond to those of obtained by the energy 

method. 
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Figure 6.  Bending moment distribution. 

 

4 CONCLUSIONS 

In this paper, with the aim of considering the relationship between buckling of battened built-up 

columns and buckling of frame, the buckling strengths of battened built-up columns by Bleich, 

the buckling strengths calculated by the energy method considering approximately the shrinkage 

and elongation of columns and the correct buckling strengths presented by Timoshenko are 

calculated.  The conclusions derived from this study are as follows: 

1) Governing parameters of the problem are the number of story n and the value of 4Ic/Acb
2
. 

2) Although the buckling strengths by Bleich agree fairly well with correct values, the strengths 

by Bleich are neither the upper bound nor the lower bound. 

3) Buckling strengths calculated by the energy method estimate the correct strength within 5% 

when the value of stories n is more than 2.  As the value of n increases, the buckling strength 

by the energy method well matches the correct value.  As is well known, the buckling 

strength by the energy method gives the upper bound. 

4) Bleich’s moment distributions correspond to those of obtained by the energy method. 
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