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Running costs of a building is a substantial share of its total life-cycle cost (LCC) and it 
ranges between 70-80% in commercial buildings.  Despite its significant contribution 
to LCC, investors and construction industry practitioners tend to mostly rely on 
construction cost exclusively.  Though the early stage estimation of running costs is 
limited due to the unavailability of historical cost data, several efforts have been taken 
to estimate the running costs of buildings using different cost estimation techniques.  
However, the prediction accuracy of those models is still challenged due to less quality 
and amount of data employed.  This study, therefore, developed an artificial neural 
network (ANN) model for running costs estimation of commercial buildings with the 
use of building design variables.  The study was quantitively approached and running 
costs data together with 13 building design variables were collected from 35 
commercial buildings.  The ANN model developed resulted in a 96.6% perfect 
correlation between the running cost and building design variables.  The testing and 
validation of the model developed indicate that there is greater prediction accuracy.  
These findings will enable industry practitioners to make informed cost decisions on 
implications of running costs in commercial buildings at its early stages, eliminating 
excessive costs to be incurred during the operational phase. 

Keywords:  Cost modeling, Operations cost, Maintenance cost, Building design 
variables, Decision-making, LCC. 

 

  

1 INTRODUCTION 

Usually, costs incurred during the operational phase of a building responsible for a substantial 

share of its Life Cycle Cost (LCC).  Some buildings have inherently higher running cost than 

others, such as commercial buildings.  For example, the running costs of commercial buildings 

account for over 69% of the total LCC (Wang et al. 2014).  Similarly, Wong et al. (2010) 

revealed that the running cost of an office building varies between 72 to 81% of its total LCC.  

Despite its contribution to the LCC structure, often running cost is given less focus in investment 

decision making and investors tend to mostly rely on initial cost alone. 

A recent study on the review of existing models for LCC estimation revealed that there is no 

simple model for estimating the running cost of buildings to date (Krstić and Marenjak 2017).  

The application of available methods and models for the running cost estimation of buildings are 

also limited to the later stage of building life cycle as these models require an extensive set of 

operational cost data (Krstić and Marenjak 2017).  For example, Al-Hajj and Horner (1998) have 

presented a running costs model for institutional buildings, with eleven cost elements and to an 

accuracy of 1.13%.  Similarly, Kirkham et al. (2002) and El-Haram et al. (2002) have developed 
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WLCC models for hospital buildings where cost components such as facilities management costs, 

energy costs, maintenance costs, residual costs, and discount rate were determinants of WLCC.  

Early-stage supportive running cost estimation models are therefore essential as it provides 

implications of costs to be incurred during the operating phase of buildings at early design stages 

of building constructions.  

Estimation of cost of a product, system, or service based on its determinants is a well-known 

and approved method for cost estimation over the years.  For example, Kirkham et al. (1999) 

have developed an energy cost model for sports centres based on building design variables such 

as the number of users and floor area.  However, Krstić and Marenjak (2017) stressed that these 

models are not based on adequate historical cost records and not based on the available cost 

structure, rather than standard cost structure.  Authors further indicate that the models developed 

so far ignore some important factors such as the age, location, level of occupancy, and standards 

of operation.  

Deciding through which type of building to include in a forecasting model is not the only 

problem.  The choice of modelling technique is also important (Boussabaine et al. 1999).  Among 

the statistical approaches, regression techniques deserve attention due to relative ease of 

implementing and requirement of less computational power than other statistical approaches (i.e. 

genetic algorithms, neural networks, support vectors machine) (Fumo and Biswas 2015).  

However, the application of purely parametric cost estimation methods is limited due to the lack 

of reliable historical cost data and building design variables, which have a direct influence on its 

LCC.  In contrary, Boussabaine et al. (1999) opined that statistical models have been used for 

some time but in present, artificial intelligence is proposed as a more reliable and accurate 

modelling technique.  Providing professionals with accurate forecasting techniques will enable 

them to make informed and reliable estimates of likely running cost in commercial buildings, as 

well as other forms of buildings.  Therefore, this study introduces an early-stage supportive 

running cost estimation model for commercial buildings with use of the artificial neural network 

(ANN) modelling. 

 

2 RESEARCH METHODS 

The research was primarily approached quantitatively to develop early-stage supportive running 

cost estimation models for commercial buildings with the use of ANN modelling.  The 

documents including architectural drawings, bills of quantities, historical cost records, and 

monthly utility bills were reviewed to collect the required data.  The case buildings selected for 

the study was limited to 35 out of the population of 117 commercial buildings, which were 

recorded in Sri Lanka due to the time constraints and limited access to cost data.  Generally, a 

sample size of more than 30 at 5% confidence level is sufficient for many types of research.  

Though it is said that a big sample of data is required to run an ANN, an ANN tool including a 

particular training-validation-test procedure for small datasets has been developed some years ago 

and recently refined in order to obtain not only realistic regression laws, but also reliable ones 

(One can refer to Pasini and Potestà (1995) and Pasini et al. (2001) for the fundamentals of this 

tool) (Pasini 2015).  Accordingly, the commercial buildings selected for the study consists of 49% 

of office buildings and 37% of banks while remaining include educational institutes, retails, and 

multi-purpose (i.e. hotel + apartment) buildings.  Further, a majority of the selected buildings 

(63%) consists of three to 12 while remaining 26% and 11% are 13 to 25 and above 25 storied 

buildings respectively. 

Based upon statistical pre-analysis, 13 variables (i.e. building design variables), which are 

quantitative in nature and convertible (nominal data) were selected for predicting the running cost 



Interdependence between Structural Engineering and Construction Management 

CPM-25-3 

of commercial buildings.  The influence of variables on the running cost and ease of availability 

of data were the primary factors in the selection of the variables.  Further, the running cost data 

were collected in accordance with the standards of BCIS, BS ISO 15686-5:2008 standard, and 

NRM3, for three consecutive financial years: 2014, 2015, and 2016.  

Initially, the collected dataset was subjected to the ‘Multiple imputation" technique to impute 

the missing values within the data set.  Next, the target variable was normalized using the gross 

internal floor area and obtain the normalized target variable called running cost/sq. ft.  The ANN 

model was developed with the aid of Neural Designer machine learning software and the 

Feedforward neural network with backpropagation training was administered as it is commonly 

used with linear activation function.  Finally, the prediction accuracy of the developed model was 

evaluated with use of the mean absolute percentage error (MAPE) and Theil’s U value.  

 

3 DATA ANALYSIS AND FINDINGS 

In order to proceed with the neural network analysis, there are three basic assumptions to be 

satisfied.  Firstly, both dependent and independent variable s should be the continuous form of 

data.  In this study, the dependent variable, which is running costs/sq. ft and independent 

variables including working days/week, working hours/day, building age, GIFA, net floor area, 

circulation area, height, number of floors, window area, Window-to-Floor-Ratio, and number of 

occupants are scale data.  In addition, two dummy variables namely, the grouping of buildings 

(1=Detached, 2=Attached), and type of structure (1=Concrete, 2=Steel, 3=Pre-fabricated) were 

added to the analysis to represent the nominal data collected.  Therefore, satisfied the first 

assumption.  Next, the Shapiro-Wilk normality test was conducted to explore the normal 

distribution of residual values.  As observed from Table 1, the significance of the standardized 

residual (ZRESI) is greater than 0.5 indicates that the ZRESI is normally distributed.  

 
Table 1.  Test of normality: Shapiro-Wilk. 

 
 Statistic df Sig. 

Standardized Residual 0.954 30 0.211 

 

Next, the relationship between the dependent variable and the independent variables are 

needed to be linear, both for each independent variable and globally.  Accordingly, a scatterplot 

analysis was conducted between each independent variable and the dependent variable and the 

charts derived are presented in Figure 1.  As shown in the scatterplot matrix, five continuous 

independent variables namely GIFA, NFA, CA, building height, and the number of floors out of 

11 have strong linear relationships with the dependent variable: running cost.  Although other six 

independent variables don't represent strong linear relationships with the dependent variable as 

the points are more scattered and it is observed that the points are trying to gather along the 

diagonal.  Therefore, it is concluded that all the independent variables have linear relationships 

with the dependent variable, thus satisfied the third assumption.  As shown in the scatterplot 

matrix, five continuous independent variables namely GIFA, NFA, CA, building height, and the 

number of floors out of 11 have strong linear relationships with the dependent variable: running 

cost.  Although other six independent variables don't represent strong linear relationships with the 

dependent variable as the points are more scattered and it is observed that the points are trying to 

gather along the diagonal.  Therefore, it is concluded that all the independent variables have 

linear relationships with the dependent variable, thus satisfied the third assumption. 
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Figure 1.  The relationship between the running cost and building design variables. 

 

3.1    The Artificial Neural Network Model for Running Cost Estimation of Buildings 

Initially, the pretreated data (with multiple imputation and normalization) was input to the 

“Neural Designer” software and the data set consists of 35 instances was itself divided into three 

types of instances such as 60% of training instances, 20% of selection instances, and 20% of 

testing instances.  Next, the data set was further pretreated by setting all instances, which includes 

constant variables, repeated variables and univariate outliers and multivariate outliers as unused 

instances.  Fortunately, the results derived indicate that there are no any constant or repeated 

variables in the data set and only 2 instances were set as unused due to outliers.  Then, the neural 

network was developed and it represents the predictive model.  Accordingly, the size of the 

scaling layer is 13, the number of inputs.  The scaling method for this layer is the 

“MinimumMaximum”.  Further, the neural network was designed with three layers.  Table 2 

depicts the size of each layer and its corresponding activation function. The architecture of this 

neural network can be written as 13:10:7:1. 

 
Table 2.  The summary of the neural network. 

 
 Input number Neurons number  Activation function 

1 13 10 Linear 

2 10 7 Linear 

3 7 1 Linear 

 

The statistics of the parameters shown in Table 3 depict information about the complexity of 

the model.  In general, it is desirable that all minimum, maximum, mean and standard deviation 

values are not very big as shown for the developed model.  

 
Table 3.  Parameters statistics of the natural network model. 

 
 Minimum  Maximum  Mean  Deviation  

Parameters  -0.990295 0.990173 -0.0601779 0.57255 

 

The loss index plays an important role in the use of a neural network. It defines the task the 

neural network is required to do and provides a measure of the quality of the representation that it 

is required to learn. The normalized squared error (NSE) is used here as the error method.  If the 

NSE has a value of unity then the neural network is predicting the data 'in the mean', while a 

value of zero means a perfect prediction of the data. In this network, the NSE is 3.28. 

The procedure used to carry out the learning process is called training (or learning) strategy.  

The quasi-Newton method was applied as the training strategy of the neural network in this study 

in order to obtain the best possible loss.  It is based on Newton's method but does not require 
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calculation of second derivatives.  Instead, the quasi-Newton method computes an approximation 

of the inverse Hessian at each iteration of the algorithm, by only using gradient information.  

Accordingly, the initial value of the training loss is 3.18746, and the final value after 230 

iterations is 0.00238913 whereas the initial value of the selection loss is 5.59346, and the final 

value after 230 iterations is 0.208116. 

A standard method to test the loss of a model is to perform a linear regression analysis 

between the scaled neural network outputs and the corresponding targets for an independent 

testing subset.  This analysis leads to three parameters for each output variable.  The first two 

parameters, a and b, corresponding to the y-intercept and the slope of the best linear regression 

relating scaled outputs and targets.  The third parameter, R2, is the correlation coefficient between 

the scaled outputs and the targets.  If we had a perfect fit (outputs exactly equal to targets), the 

slope would be 1, and the y-intercept would be 0.  If the correlation coefficient is equal to 1, then 

there is a perfect correlation between the outputs from the neural network and the targets in the 

testing subset.  Accordingly, Table 4 lists the linear regression parameters for the scaled output 

running cost/sq. ft. 

 
Table 4.  The linear regression parameters for the scaled output running cost/sq. ft. 

 
Regression parameters Value 

Intercept  -0.0355 

Slope  1.14 

Correlation  0.966 

 

The mathematical expression represented by the neural network inputs working days/week, 

working hours/day, attached/detached, age, gross internal floor area, net floor area, circulation 

area, height, no. of floors, type of structure, window area, window to floor ratio and occupancy to 

produce the output Running cost/sq. ft.  For function regression problems, the information is 

propagated in a feed-forward fashion through the scaling layer, the perceptron layers and the 

unscaling layer. 

 

3.2    Model Testing 

The purpose of model testing is to evaluate the performance of the developed ANN model in 

estimating a functional form that relates the design variables of commercial buildings to the 

running cost.  Table 5 presents the prediction accuracy of the developed ANN model with use of 

the MAPE and Theil’s U statistic, which commonly used to measure the performance.  

 
Table 5.  Results of test statistics for model accuracy. 

 
Test ANN 

MAPE -4.9% 

Theil’s U value 0.049 

 

As shown in Table 5, the average MAPE of the ANN model is -4.9%, indicates that the ANN 

model has been achieved a high accuracy.  The Theil's U value for the ANN model is 0.049 

(where the U value indicates greater accuracy as U→0).  Further, the neural network model 

recorded a correlation of 0.966, this accuracy is better than that recorded by the so far developed 

parametric regression models for LCC estimation.  
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4 CONCLUSIONS 

The paper has highlighted the importance of different modelling techniques for predicting cost to 

be incurred during the operation phase of buildings particularly, commercial.  The level of MAPE 

for the ANN model can be considered acceptable in most real applications, depending on the 

phase of application of the model.  It is clear from this limited experiment that ANN was able to 

extract a functional form (i.e., a function) that represents the problem under investigation.  The 

study has also shown that ANN models may prove as a good alternative to parametric cost 

modelling.  Within the limits of this study, ANN models have been shown to be able to model 

data that strongly exhibit noise and achieve reasonable accuracy.  
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