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Damage Mechanics has become a useful theory in describing the nonlinear behavior of 
solids driven by the nucleation and growth of cracks and microcracks.  This approach, 
based on the first principles of mechanics and thermodynamics, has also been 
combined with classical theories of plasticity to address a wide range of loading 
applications.  In spite of the many different damage mechanics models and 
representations that are proposed, the foundation of damage mechanics is not well 
understood or at least not thoroughly published giving rise to the many inaccurate 
definitions and formulations.  The intent of this paper is to provide the background of 
the continuum damage mechanics outlining the fundamentals on which this field theory 
is set up.  The internal variable theory of continuum thermodynamics is reviewed and is 
shown that with Legendre transformation technique, various potential functions can be 
developed for damage mechanics formulation in either stress or strain space.  The 
concept of constrained or neighboring equilibrium state is also introduced and is 
explained.  The paper will conclude with the derivation of the general damage potential 
and a suggestion is given for the isotropic damage formulation with the resulting 
uniaxial stress-strain relation. 

Keywords:  Response tensor, Plasticity, Dissipation inequality, Isothermal 
deformations. 

 

 

1 INTRODUCTION 

The observed nonlinear behavior in brittle solids stems from two main meso-structural changes 

within the materials.  One is the development and propagation of microcracks and micro-voids.  

The process of cracking destroys material bonds and leads to the reduction in the material 

stiffness.  Failure occurs where these microcracks link up and form a major crack and fault line.  

This behavioral pattern occurs mostly when zero or low confining pressure exists.  Uniaxial 

tension, uniaxial compression, biaxial compression and tension are typical load paths under which 

microcracks propagation and coalescence dominate solid behavior.  

When the lateral confining pressure is large, the formation of microcracks gets inhibited 

and/or delayed.  The classical experimental work of Hueckel and Maier (1977) on rocks has 

shown that under sufficiently large confining pressure permanent deformations due to plastic flow 

and void closures occur and that these meso-structural changes, as the other category of internal 



Ozevin, D., Ataei, H., Modares, M., Gurgun, A., Yazdani, S., and Singh, A (eds.) 

STR-116-2 

changes, lead to no alteration of material stiffness.  To model such diverse behavior observed in 

solid materials, different classes of theories have been proposed. 

There are three levels of damage mechanics theories that one may employ to model nonlinear 

behavior of brittle solids.  One is the micro-level modeling incorporating material science 

approach where the formulation is intended to correlate closely with the physics of micro-

structural changes.  Although, this approach is fundamental, its usefulness is rather limited in 

engineering applications where complex loading paths, such as proportional and non-proportional 

paths, load reversal, etc, must be considered.  The next level used by researchers is referred to as 

the meso-level modeling where microcrack development and kinetics at a smaller scale than a 

continuum is utilized.  This approach is interesting and promising involving discrete field theories 

such as fracture mechanics to model microcrack initiation and propagation in the medium and at 

the interfaces.  The utility of this approach is restricted to simple load paths and the end an 

averaging or smearing formalism is used to predict macro behavior; hence losing the fine details 

used up to that point.  For most engineering applications and modeling the third approach, namely 

the macro-level modeling (Saboori et al. 2014, 2015) is overwhelmingly used and appears in 

numerical simulation codes such as ANSYS and ABAQUS.  

This intent of this paper is therefore to present a continuum level class of damage mechanics 

theories that is based on the first principles of mechanics and thermodynamics.  Some 

fundamental concepts critical to the understanding of the theory is explained in the body of the 

paper.  

 

2 FORMULATION 

Central to the continuum damage mechanics is the concept of neighboring equilibrium state 

(Ortiz 1985, Yazdani and Karnawat 1996, Yazdani 1993).  This can be explained further in a 

schematic representation of a crack growth in Figure 1.  From fracture mechanics, we know that 

an active and stable crack of length 𝑎 would reach another equilibrium state of length 𝑏 once 

acted upon a sufficiently large load that overcomes local fracture resistance. 

 

 
 

Figure 1.  Schematic representation of crack growth. 

 

The concept of the neighboring equilibrium state would allow for the mathematical 

formulation of crack growths at lengths a and b, but also for any assumed length in between; and 

hence the term neighboring equilibrium state is used.  Assuming that the material internal energy 

under stress exists, the internal variable theory of thermodynamics (Lubliner 1972) can be used to 

cast an equilibrium state in terms of the Helmholtz Free Energy (HFE), 𝐴(𝝐, 𝑘), or the Gibbs Free 
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Energy (GFE), 𝐺(𝝈, 𝑘) where 𝝐 is the strain tensor, 𝒌 represents a cumulative damage parameter, 

and 𝝈 denotes the Cauchy stress tensor.  The thermodynamics functions HFE and GFE are related 

to each other through an elegant mathematical transformation technique known as “Legendre” 

transformation. 

When formulation is desired to be developed in terms of the strain components, then the HFE 

function is used.  When stress space formulation is desired, the GFE function is utilized.  For 

isothermal deformations, as assumed here, the internal dissipation inequality as a consequence of 

the second law of thermodynamics, can be expressed either in terms of the HFE as shown in Eq. 

(1) and Eq. (2): 

 �̇� + 𝝈: �̇�  ≥ 0 (1) 

or in terms of GFE as:  

 �̇� − 𝝐 ∶  �̇� ≥ 𝟎 (2) 

where the “super dots” denote the time rate.  For the rest of this paper the foundation of the 

damage mechanics will be presented in the stress space using GFE.  

Cracking and microcracking in brittle solids is known to destroy material bonds and thus 

affecting the compliance of the solid.  Denoting the compliance tensor as 𝑪(𝑘) and the initial 

compliance of the undamaged state as 𝑪𝟎 is then shown in Eq. (3): 

 𝑪(𝒌) = 𝑪𝟎 + 𝑪𝒄(𝒌) (3) 

where 𝑪𝒄 is the added compliance tensor reflecting the effects of damage.  The total 

deformation can also be shown in terms of the components as Eq. (4): 

 
𝝐 = 𝝐𝟎 + 𝝐𝑫 + 𝝐𝒓(𝑘) 

 

                         = 𝑪𝟎: 𝝈 +  𝑪𝑐(𝑘): 𝝈 +  𝝐𝒓(𝑘) (4) 

where 𝝐𝟎 = 𝑪0: 𝝈  is the elastic component of the deformation, 𝝐𝐷(𝑘) = 𝑪𝒄(𝑘): 𝝈 is referred 

to as the elastic damage deformation, and 𝝐𝒓(𝑘) is the inelastic or un-recoverable/permanent 

deformation caused by the misfit of crack surfaces.  The schematic representation of these 

components is shown in Figure 2 for a uniaxial stress path.  

 

 
 

Figure 2.  Schematic representation of deformation components. 

 

Eq. (2) leads to two fundamental equations that: 
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𝝐 =  

𝜕𝐺

𝜕𝝈
  

(5) 

and  

 𝜕𝐺

𝜕𝑘
�̇�  ≥ 0  

(6) 

where, Eq. (5) states that the GFE is a potential to the strain tensor and where Eq. (6) is called 

the dissipation inequality.  Integrating Eq. (5) and using the decomposition structure shown in Eq. 

(4), a general form of the GFE as obtained as: 

 
𝐺(𝝈, 𝑘) =

𝟏

𝟐
𝝈: 𝑪: 𝝈 +  𝝐𝒓(𝑘): 𝝈 − 𝐴𝑖(𝑘)  

(7) 

where 𝐴𝑖(𝑘) is the inelastic component of the HFE associated with the surface tension of the 

crack surfaces and arises as the constant of the integration.  Incorporating Eq. (7) into Eq. (6) 

yields: 

 𝜕𝐺

𝜕𝑘
=

1

2
: 𝝈:

𝜕𝑪𝒄

𝜕𝑘
: 𝝈 +

𝜕𝝐𝒓(𝑘)

𝜕𝑘
: 𝝈 +

𝜕𝐴𝑖(𝑘)

𝜕𝑘
 ≥ 0 

(8) 

where it is assumed that damage is irreversible; i.e. �̇�  ≥ 0. 

Utilizing Eq. (8), we can now obtain a damage potential 𝝍(𝝈, 𝑘) by introducing a positive 

function 𝒈𝟐(𝝈, 𝑘) as shown in Eq. (9) such that: 

 

𝜓(𝝈, 𝑘) =
1

2
𝝈:

𝜕𝑪𝑐

𝜕𝑘
: 𝝈 +

𝜕𝝐𝑟

𝜕𝑘
: 𝝈 +

𝜕𝐴𝑖(𝑘)

𝜕𝑘
− 𝑔2(𝝈, 𝑘) 

 

 

 

 

          =
1

2
𝝈:

𝜕𝑪𝒄

𝜕𝑘
: 𝝈 +

𝜕𝝐𝒓

𝜕𝑘
: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0  (9) 

where 𝑡2(𝝈, 𝑘) =  −2
𝜕𝐴𝑖

𝜕𝑘
+ 2𝑔2(𝝈, 𝑘) is regarded as the damage function.  We note that the 

identification of either of the functions 
𝜕𝐴𝑖

𝜕𝑘
 or 𝑔2(𝝈, 𝑘) is not necessary as long as the damage 

function 𝑡(𝝈, 𝑘) is obtained through experiments.  The final general form of the damage surface, 

𝜓(𝝈, 𝑘) can then be stated by introducing a damage response tensor 𝑹 and a flow-rule for �̇�𝒓 (Eq. 

(10) and Eq. (11)) with M being identified as the second order inelastic flow tensor, such that: 

 �̇�𝒄(𝑘) =  �̇�𝑹 (10) 

 �̇�𝒓(𝑘) =  �̇�𝑴  (11) 

Introducing these into the structure of Eq. (9) yields the general form of the damage surface 

as Eq. (12): 

 
𝜓(𝝈, 𝑘) =

1

2
𝝈: 𝑹: 𝝈 + 𝑴: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0 

(12) 

Different tensors of 𝑹 and 𝑴 define different models that are published in the literature.  If 𝑹 

is postulated as an isotropic tensor, the predicted results would be considered isotropic.  This is 
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not usually observed in brittle solids, but under blast loading some isotropic and uniform 

distribution of damage has been reported, making isotropic from of 𝑹 a viable choice in some 

cases. 

 

3 EXAMPLE – UNIAXIAL LOAD PATH 

With 𝑹 speculated to be proportional to an isotropic tensor, and with 𝑴 being set as a null tensor 

for simplicity, the uniaxial stress can be reduced from Eq. (12) to be (Eq. 13)): 

 𝜎1 = 𝑡(𝑘) (13) 

which implies that the damage function could be experimentally determined from a simple 

uniaxial test.  When the tensor M is set to be a null tensor, no inelastic damage strain, 𝝐𝒓(𝑘),  is 

predicted and the response is classified as being elastic-perfectly brittle.  The associated uniaxial 

strain, 𝝐𝟏 then obtained by integrating the rate form of the Eq. (4), in general or for the case of 

simply load path as considered here simply from Eq. (4) and Eq. (13) as Eq. (14): 

 
𝜖1 = (

1

𝐸0
+ 𝑘) 𝜎1 

(14) 

A normalized stress-strain curve for using the damage function by Ortiz (1985) is shown in 

Figure 3, where 𝒇𝒕 is the uniaxial tensile strength of solid and 𝝐t is the corresponding strain. 

 

 
 

Figure 3.  Normalized stress-strain curve of a solid under uniaxial tensile loading. 

 

4 CONCLUSIONS 

Damage mechanics is a viable field theory for solids where the development of cracks and 

microcracks render the material damaged and hence more compliant.  A class of damage 

mechanic theories is outlined in this paper defining all critical assumptions and terms not usually 

covered in papers on damage mechanics.  This approach was shown to be based on the first 

principles of mechanics and thermodynamics utilizing the second law to obtain dissipation 

inequality leading to the formulation of a damage potential.  In this way, the number of material 

parameters is usually small, and pertain to the physical attributes of the macro behavior such as 

elasticity, Poisson’s ratio, bi-axial strength ratios, etc.  The general form of the damage surface 

was derived and damage response tensors were defined.  An example of stress-strain relation was 

provided for a special case of isotropic tensor for 𝑹, making the interpretation of the damage 

parameter rather straight forward and easy to understand.  
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