
Interdependence between Structural Engineering and Construction Management 
Edited by Ozevin, D., Ataei, H., Modares, M., Gurgun, A., Yazdani, S., and Singh, A. 

Copyright © 2019 ISEC Press 

ISBN:  978-0-9960437-6-2 

STR-58-1 

CRACK PATTERN PREDICTION OF LATERALLY 

LOADED PANELS WITH OPENINGS BASED ON 

ANN METHOD 

YONGFEI WANG1,2 and YU ZHANG1,2 

1Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin 

Institute of Technology, Harbin, China 
2Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of 

Industry and Information Technology, Harbin Institute of Technology, Harbin, China 
 

In this paper, a Back Propagation Neural Network (BPNN) is used to predict crack 
pattern for masonry panels with opening subjected to lateral loading.  The cellular 
automata method is used to digitalize the panels, including two steps - dividing a panel 
into a certain number of cells and calculating cell state values by use of a Von 
Neumann neighborhood model.  These digitalized values are used as input data of NN 
model, respectively.  All the experimental data is collected, including panel 
configuration, material property, opening ratio and location, state values, and crack 
pattern.  The NN model is trained repeatedly, taking part of the data as a training set, to 
determine parameters, and the rest of the data is taken to check the model.  Well-trained 
NN models can predict the crack pattern of any other panel.  The results show that NN 
method is suitable for prediction of crack pattern.  Comparing the two ways of 
prediction, the Fragility Coefficient Method gets a more precise pattern.  The predicted 
cracks are distributed successively in some specific areas, especially in high similarity, 
compared with experimental crack pattern. 

Keywords:  Cellular automata, Digitalization, Weakness, Fragility coefficient, Back-
propagation neural network. 

 

 

1 INTRODUCTION 

For traditional masonry structure, the lateral force is an unneglectable load; for example, great 

wind pressure could not be ignored for damages on some special buildings.  Other lateral forces, 

like explosions (Varma et al. 1997), cyclic lateral force (Davidson and Wang 1985), and out-of-

plane shaking force (Tu et al. 2010), are also taking effect on the behavior.  Golding (1991) and 

Sinha (2001) did deep research on the design of laterally loaded masonry.  One of the key 

research topics is the failure model.  In this paper, an artificial neural network (ANN) model is 

built to predict the crack pattern of laterally-loaded panels with different openings, and all the 

original statistics are from Chong (1993)’s experiments.  To accomplish the prediction, firstly 

digitalize the panels by cellular automata (CA) technique.  Secondly, the generated data and other 

aspects which concern the crack distribution are treated as the input data of the ANN model. 

Crack status (cracked or non-cracking) is used as the output data of the ANN model.  Taking one 

panel as the base panel, it's CA model and crack status are used to train the ANN model.  Then, 

the trained ANN model is used to predict other panels.  This method could reflect the main crack 
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distribution, but it still has imperfections such as the disappeared tiny cracks.  So, this paper gives 

an innovative concept: the fragility coefficient. 

 

2 BACK PROPAGATION NEURAL NETWORK ARCHITECTURE 

The BPNN contains input layer, hidden layers, and output layer.  Input layer contains 11 nodes in 

total (shown in Figure 1), in which 9 nodes are the state values of one cell (shown in Figure 2), 

and the other two are the x and y coordinates (these two parameters were used especially for 

panels with different size, and it’s not mentioned in this paper).  There are two hidden layers, 18 

nodes in the first layer and 10 nodes in the second one.  For the direct prediction method (DPM), 

output layer means the crack pattern of matrix type, only including two separate digits, 0 for non-

cracking cells and 1 for cracked ones.  Considering the fragility coefficient, output layer is 

different from DPM's continuous values of 0 to 1.  Figure 3 describes the relationship between the 

DPM and the fragility coefficient method (FCM).  Activation function is logsig.   
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            Figure 1.  The BPNN model.                   Figure 2.  The state value by Moore model of CA. 
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Figure 3.  Introduction of two methods. 

 

3 BACK PROPAGATION NEURAL NETWORK MODEL 

3.1    Panel Information Digitalization 

CA is a localized and dynamic system both in time and space.  Cell is a basic unit of a CA 

system.  Every cell has its unique state value, which could reflect the corresponding location’s 

potential information (Maja and Justyna 2010, Morita 2018).  The state value of a cell is not only 
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decided by itself, but also these cells around it.  These cells are called neighborhoods.  There’re 

two main neighborhood models, Von Neumann and Moore neighborhoods showing in Figure 4. 

 

                
                                                    (a) Von Neumann                  (b) Moore 

 

Figure 4.  Two neighborhood models. 

 

3.1.1    Selection of the state values 

The state value of a panel is calculated in Eq. (1) by Von Neumann neighborhoods as following:  

s , , , , 1 , 1

, , , , 1 , 1

, , , 1, 1,

,

=1 , )

=1 , ),(

(1   1,2, ,   1,  2, ,

(1   1,2, , ;   

=1 , ),(

,  1, ,1

(1   1   1,  2, ,

=1

 

i j i j i j i j i j

si j i j i j i j i j

si j i j i j i j i j

si j i

L L L L L i M j N

R R R R R i M j N N

B B B i M M jB B

T T

N







− −

− −

− −

+ − =  = − =

− + − =  = − 

+ − = − 

−

=

=

− =

，( ； ）

）

， ； ）

, , 1, 1,, ),(1   1,2, ,   1,  2, ,j i j i j i jT T i jT M N+ + = + − = = ；( ）

                   (1) 

Where Lsi,j, Tsi,j, Bsi,j, Rsi,j are state values calculated by constraint transiting from left, top, 

bottom and right side. Li,0, T0,j, BM+1,j, Ri,N+1 are the initial values of Li,j, Ti,j, Bi,j, Ri,j , which reflect 

the constraint on each border. M, N are the numbers of rows and columns of the zoning area.  And 
  is coefficient of transition (Zhang et al. 2010 and Huang et al. 2013). 

The state value Si,j of each cell is defined in Eq. (2) as the average value from its four 

neighboring cells: 
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3.1.2    Division of the panel with opening 

During the digitalization of panel with opening, there is a bit flaw; that is loss of continuity near 

the opening.  Due to its importance to the NN training, division again is needed absolutely.  The 

division method for a representing panel, taking Panel SB02 for example, is shown in Figure 5.  

According to this division method, all panels can be divided into four parts and the zoning data is 

shown in Table 1.  Taking Area I-VIII-VII for an example, the state value is calculated by 

transiting the left, top and bottom side constraints.  Each parameter is expressed in Figure 6. 

 
Table 1.  Sizes of panel division (mm). 

 

size SB01 SB02 SB03 SB04 SB05 SB06 SB07 SB09 

x1 2808 1677 1340 2352 2808 1450 1000 3815 

x2 0 2260 2935 910 0 0 900 900 

x3 2808 1677 1340 2352 2808 1450 1000 900 

y1 1238 900 1500 0 1238 1225 900 900 

y2 0 1125 525 2025 0 0 900 900 

y3 1238 450 450 450 1238 1225 650 675 
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          Figure 5.  Panel division.                             Figure 6.  Parameters from division. 

 

3.2    The Fragility Coefficient of The Panel with Opening 

Unlike the homogeneous materials like steels, masonry panels are made up of building blocks 

(like bricks) and bonder (like mortar), which gives them the variability that is another factor 

influencing the working performance besides material itself and load case. 

The data from the previous experiment is not accurate enough to choose a base panel.  The 

information the base panel represents cannot stand for the scientific and general law.  On the 

other hand, predicted crack patterns of other panels may show great differences from the actual 

ones due to the influence of the masonry’s variability.  To alleviate the influence, Fragility 

Coefficient (FC) is proposed to make comparison of the DPM method. 

Fragility Coefficient: a parameter that shows whether a unit within the panel is apt to crack 

or not.  To realize it, Eq. (3) is proposed to calculate FC, referring to the feature of inverse 

proportional function.  With an experimental crack pattern, the FC data could be achieved by 

programming. Figure 7 shows the FC distribution of Panel SB05. 

0.8
=

| | | |i p i px x y y


− + −
                                                       (3) 

Where xi, yi are x and y coordinates of the calculating unit, xp, yp are x and y coordinates of the 

reference unit, and 0.8 comes from experience. 

 

                       
 (a) Experimental crack pattern                                   (b) FC distribution  

 

Figure 7.  Panel SB05. 

 

4 BPNN TRAINING AND RESULTS 

With all data preparation and BPNN model, this study selects different representative base panels 

in the two methods to compare two prediction results.  In each method, a base panel with 

512(16×32, from one base panel) groups of data are used to train the BPNN.  In DPM, Panel 

SB02 is used as the base panel.  Panel SB05 is the base one in FCM.  Training process of the 

DPM (as an example) is shown in Figure 8.  Predicted crack pattern of other panels from SB01 to 

SB09 are shown in the Table 2. 
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Table 2.  Prediction result. 
 

Panel 

No.  
Experimented crack pattern  

Predicted crack patterns 

DPM FCM 

SB01 

   

SB02 

 

Base Panel 

 

SB03 

   

SB04 

 
 

 

SB05 

  

Base Panel 

Panel 

No.  
Experimented crack pattern  

Predicted crack patterns 

DPM FCM 

SB09 

 
 

 

 

By the comparison of prediction results, it can be found that there are still distinct similarities 

and differences, although both methods have the same BPNN model.  Further analysis shows 

that: 

• Both predicted crack patterns can generally reflect the main location and spreading 

direction of actual crack.  

• In DPM, predicted cracks are located on top of the opening, spreading along the vertical 

symmetrical axis, such as Panel SB03 and SB04.   

• In FCM, a black rectangular area means the opening of panel, and the shadow means 

location and spreading direction of actual crack.  This area contains all potential cracks.  
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Figure 8.  Training of the BPNN. 

 

5 CONCLUSIONS 

This paper presents that BPNN predicts the crack pattern of the masonry panels with opening.  

Comparing two methods of prediction, we have the following conclusions: 

• Although only one panel is used for training, with the science of digitalization, different 

panels have the same feature in state value, giving BPNN the basis to decide a unit is 

cracked or not.  So, it can make the prediction of crack pattern of the masonry panels with 

opening more accurate. 

• FC is presented to describe the location and spreading direction of actual crack.  It is 

better than DPM as it includes abundant information about potential crack pattern. 

• Proposed division of panel with opening is a specialized targeted method about 

digitalization.  It is an effective and worthy method to analyze in future. 
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