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Classical theory of plasticity is fairly complete with flow rules, convexity of yield 
surfaces, extremum principles, and the uniqueness theorem.  For the strain-hardening 
plasticity, Drucker’s postulates are established and proven based on the plastic-work 
and energy principles.  Plasticity models have been further applied to heterogeneous 
and cementitious materials with certain degrees of success.  In this paper, the stability 
statements of strain-hardening and strain-softening processes in concrete are examined 
by utilizing thermodynamic potential functions in the stress space and by applying 
Euler’s theorem of homogenous functions.  It is shown that by specifying a strain-
hardening parameter to account for the plastic strains and a damage parameter to 
represent the effect of microcracking, the dissipation inequality can be used to establish 
the Drucker’s stability postulate for the plastic flow within the framework of the 
internal variable theory of thermodynamics.  Using the same approach and assuming 
uncoupling between plastic flow and microcracking, the formation leads to a softening 
stability statement for damage processes in concrete.  
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1    INTRODUCTION 

Classical theories of plasticity have been well established.  In these theories, the general premise 
considers a yield surface encompassing an elastic domain.  The total strain increment is then 
additively decomposed into elastic and plastic strain components.  Flow rules are subsequently 
postulated for the plastic strain increments and the necessary and sufficient conditions are stated 
usually in the Kuhn-Tucker forms.  The Drucker’s plasticity postulate states that for a stable 
process in an elastic-plastic deformation, the work done by an external agency on the changes in 
the displacements it produces must be non-negative (Lubliner 2006).  Mathematically, it can be 
written as shown in Eq. (1). 

  𝜀! : 𝜎   ≥ 0                                                                        (1) 

where, 𝜀!   denotes the changes in plastic strain tensor and where 𝜎 represents the changes in 
the Cauchy stress tensor caused by an external load.  The Drucker’s postulate leads to the 
conclusions that the yield surface is convex in the stress space and that the increment of plastic 
strain tensor is normal to the yield surface.  This is referred to as associated flow-rule.  The non-
negative scalar multiplier in the associated flow-rule is determined from the consistency condition 
of the yield surface (Lubliner 2006, Neto et al. 2008).  
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In this context, the von Mises yield criterion is most widely used with strain hardening 
functions and parameters.  The von Mises criterion is a pressure independent criterion and if 
represented in the generalized shear-pressure space, is a straight line.  This is shown in Figure 1. 

The success of the general plasticity theory motivated researchers to expand the scope of the 
theory and to develop plasticity models to capture the behavior of frictional and cementitious type 
materials such as concrete.  There are numerous multi-parameter plasticity-based models 
published in the literature and most nonlinear finite element codes incorporate a number of these 
plasticity models.  The simplest one is the Drucker-Prager formulation that is also shown in 
Figure 1 to be contrasted with the von Mises surface.  In the Drucker-Prager model, the material 
is pressure-dependent where the uniaxial compressive strength is several times greater than the 
uniaxial tensile strength and where the material exhibits enhanced strength and ductility under the 
increasing pressure.  This is one well known characteristic of the behavior of concrete. 

Non-linearity in concrete arises from two distinct meso-structural changes.  One is the 
development of cracks and microcracks under zero or low confining pressures, and the other is 
development of plastic flow due to void closure and slips planes in the aggregate field in the 
presence of large confining pressures (Ortiz 1985).  The objective of this paper is to that by 
considering the stability definitions for thermodynamics potential functions, the Drucker’s 
plasticity postulate can be obtained as a sub-set of an over-all stability statements.  The same can 
be expanded to establish a softening stability postulate for damage processes due to 
microcracking as will be shown in the sequel.  

	

Figure 1.  Representation of von Mises and Ducker-Prager surfaces in the generalized shear-pressure space. 
 

Using the internal variable theory of thermodynamics and utilizing the Gibbs Free Energy 
(GFE), G(σ, q), the dissipation inequality can be shown (Eq. 2) to yield (Lubliner 1972). 

 !" 𝝈,!
!"

𝑞 = !" 𝝈,!
!"

𝛾 + !" 𝝈,!
!"

𝑘 ≥ 0 (2) 

where, the internal inelasticity parameter q is given by q = k + γ in which k is identified as the 
cumulative damage parameter and γ represents the plasticity parameter.  The second law of the 
thermodynamics also leads to the conclusions that GFE is a potential function for the total strain 



Proceedings of International Structural Engineering and Construction, 8(1), 2021 
Interdisciplinary Civil and Construction Engineering Projects 

 STR-34-3 © 2021 ISEC Press 

tensor, i.e.  𝜀 =  𝜕𝐺(𝜎, 𝑞)/𝜕𝜎 so that the general form of the GFE can be stated as shown in Eq. 
(3) (Yazdani and Karnawat 1996): 

 𝐺 𝜎, 𝑞 =  !
!
𝜎:𝐶 𝑘 :𝜎 +  𝜀!: 𝜎 − 𝐴! 𝑞  (3) 

where, C(k) denotes the current compliance of the material and is assumed to change with the 
initiation and accumulation of damage, and where Ai(q) is the inelastic component of the 
Helmholtz Free Energy (HFE) that arises as a constant of integration.  Two functions Ф and 𝛺 are 
then defined in Eq. (4) such that 

 𝛷 𝜎, 𝛾 = !" !,!
!"

  &  𝛺 𝜎, 𝑘 = !" !,!
!"

 (4) 

It is further assumed that 𝛾 and 𝑘 satisfy the irreversibility conditions, namely 𝛾 ≥ 0 & 𝑘 ≥
0, and that no coupling between damage and plasticity takes place.  This is referred to as an un-
coupled theory.  To progress further, the rate of the total strain tensor is decomposed into plastic 
and damage strain components as shown in Eq. (5): 

 𝜖  =  𝜖! 𝛾 +  𝜖! 𝑘  (5) 

where the plastic strain tensor is denoted by 𝝐𝒑 as before and the damage strain tensor is 
denoted by 𝝐𝑫. The additive decompositions of tensors, such as shown above, is allowed for small 
deformations as assumed here for concrete. 
 
2    FLOW RULES FOR PLASTICITY  

With the assumption that concrete is a plastically stable material and that the softening behavior 
is only due to the process of damage (Ortiz 1985), the following form of the yield function for 
plasticity is postulated in Eq. (6). 

 𝐹 𝜎, 𝛾 = 𝐹∗ 𝜎 − 𝜏 𝛾  (6) 

where 𝐹∗ 𝜎  is a homogenous function in 𝜎 of the first degree and where τ (γ) defines the 
hardening rule.  Then, the plastic strain rate is given as in Eq. (7). 

 𝜖! 𝛾 = 𝛾 !" !,!
!"

= 𝛾 !!
∗ !
!"

 (7) 

and utilizing Eqs (3) and (4), it yields to Eq. (8). 

 𝛷 𝜎, 𝛾 = 𝜎: !!
! !
!"

− !!! !
!"

= 𝜎: !!
∗ !
!"

− 𝜏 𝛾 = 𝐹∗ 𝜎 − 𝜏 𝛾  (8) 

where, Ap is the plastic component of the Ai(q) and where use has been made of the Euler 
theorem for homogenous functions and 𝜏 𝛾  is chosen to be equal to !!

! !
!"

 so that function Φ 
and F are the same. 
 
3    FOLLOW RULES FOR DAMAGE  

For small deformations as is appropriate for brittle materials, the total flexibility tensor can be 
divided into the initial undamaged flexibility, C0, and added flexibility, Cc(k), due to 
microcracking; that is C(k) = C0 + Cc(k).  The changes in the damage strain tensor are then related 
to the changes in the added flexibility tensor 𝐶!  as shown in Eq. (9). 
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 𝜖! 𝑘 = 𝐶! 𝑘 :𝜎 (9) 

so that 𝜖!(𝑘) can be obtained by identifying an evolution equation for 𝐶! 𝑘 .  This can be 
accomplished if a fourth-order response tensor 𝑅 𝜎  is defined in Eq. (10) such that  

 𝐶! 𝑘 = 𝑘𝑅 𝜎  (10) 

Different form of response tensors would identify different damage model.  For example, an 
isotropic damage formulation can be obtained if one identifies 𝑅 𝜎  to be proportional to the 
general isotropic compliance tensor of elasticity (Yazdani et al. 2019).  Following the general 
damage formulation of Ortiz (1985) and using Eq (4), the damage potential function, 𝛺 𝜎, 𝑘  is 
identified in Eq. (11) as 

 𝛺 𝜎, 𝑘 = !
!
𝜎: !!

! !
!"

:𝜎 − !!! !
!"

 (11) 

where, the function AD reflects the damage component of Ai(q) associated with the surface 
energy of cracks formation.  A general from of the damage surface, Ψ(σ,k), can then be 
formulated by defining a softening function f(k) such that  Ψ(σ, k) = 𝛺 𝜎, 𝑘  – f2(k) = 0 subject to 
the condition that f(𝜕𝑓/𝜕𝑘)  ≤ 0 .  Other possible damage formulations for concrete can be found 
in the literature (Vorobiev et al. 2018, Li and Wu 2018, Peng and Meyer 2000). 

With the irreversibility assumptions on 𝛾 and 𝑘 and in the absence of any internal constraints,  
it follows that the criteria for loading and unloading can formally be stated in the standard Kuhn-
Tucker forms for both the plasticity and damage processes as shown in Eq. (12) and Eq. (13).  

  𝛷 ≤ 0,   𝛾  ≥ 0, 𝛾𝛷 = 0 (12) 

 Ψ ≤ 0,   𝑘  ≥ 0, 𝑘Ψ = 0   (13) 

4    STABILITY CONSIDERATION  

In order to investigate stability, certain definitions and assumptions must be introduced (Simo and 
Hughes 1988, William et al. 1985) as shown through Eq. (14) – Eq. (30). Considering Gibbs Free 
Energy function, G, the two subset parameters qi and qj are mutually hardening if  

 𝑞!
!!!

!!!!!!
𝑞! ≤ 0  (14) 

and are mutually softening (Eq. (15)) if  

 𝑞!
!!!

!!!!!!
𝑞! ≥ 0    (15) 

A subset parameter qα is stable, if there is hardening with respect to itself that is,  

 𝑞!
!!!

!!!!!!
𝑞! ≤ 0 (16) 

and is unstable if there is softening with respect to itself, that is,  

 𝑞!
!!!

!!!!!!
𝑞! ≥ 0 (17) 

Concrete is assumed to be plastically stable, that is,  

 𝛾 !!!
!"!"

𝛾 ≤ 0  (18) 
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and concrete is assumed to be unstable under damage, that is, 

 𝑘 !!!
!"!"

𝑘 ≥ 0      (19)  

With these definitions and assumptions, the consistency condition for rate independent 
plasticity will be examined first.  Considering Φ: 

 𝛷 = !" !,!
!"

:𝜎 + !" !,!
!"

𝛾 = !!∗ !
!"

:𝜎 − !" !
!"

𝛾 = 0 (20) 

and, denoting !" !
!"

= 𝐻! 𝛾  as the plastic modulus, Eq. (20) becomes  

 !!∗ !
!"

:𝜎 = 𝐻! 𝛾 𝛾 (21) 

From Eq. (18) and with the irreversibility assumption on 𝛾, it follows that 

 !!!
!"!"

= − !" !
!"

= −𝐻! 𝛾 ≤ 0  (22) 

which implies that  

 𝐻! 𝛾 ≥ 0        (23) 

that is, the plastic modulus is nonnegative.  After multiplying the terms in Eq. (23) with 𝛾, it 
follows that  

 𝛾 !!
∗ !
!"

:𝜎 = 𝛾𝐻! 𝛾 𝛾 ≥ 0   (24) 

thus  

 𝜖!:𝜎 ≥ 0    (25) 

which is the same as Drucker’s stability postulate.  With the same approach, one can now 
consider the consistency conditions for the damage surface, as: 

 𝜓 = !" 𝝈,!
!𝝈

:𝜎 + !" !,!
!"

𝑘 = 0  (26) 

or  

 !!! !
!"

:𝜎 :𝜎 + !
!
𝜎: !

!!! !
!!!

:𝜎 − !!!! !
!!!

− 2𝑓(𝜕𝑓/𝜕𝑘) 𝑘 = 0 (27) 

From Eq. (19), and that 𝑘 ≥ 0¸it follows that  

 !
!
𝜎: !

!!! !
!!!

:𝜎 − !!!! !
!!!

− 2𝑓(𝜕𝑓/𝜕𝑘) ≥ 0 (28) 

which, when compared to Eq. (27), yields that  

 !!! !
!"

:𝜎 :𝜎 ≤ 0 (29) 

The multiplication of terms in Eq. (29) with 𝑘 ≥ 0 leads to  

 𝑘 !!! !
!"

:𝜎 :𝜎 = 𝜖!: 𝜎 ≤ 0 (30) 
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which, represents the stability statement for the damage-softening processes.  All admissible 
damage processes must satisfy the inequality of Eq. (30) and damage models must be formulated 
such that Eq. (30) is not violated. 
 
5    CONCLUSIONS  

In this paper, the stability conditions of inelastic deformations in concrete are arrived at by 
utilizing dissipation inequalities of the internal variable theory of thermodynamics.  It is shown 
that by a set of stability statements of thermodynamic potentials and assuming associate flow 
rules, the Drucker’s stability postulate can be reached showing the positive rate of work done of 
the plastic strain and the Cauchy stress changes.  Similarly, the approach can be extended to 
establish the softening character of damage due to microcracking in concrete.  Eqs (25) and (30) 
represent the two stability conditions for plasticity and for damage, respectively.  Throughout this 
paper, it is assumed that elasto-plastic-damage processes are un-coupled.  Consideration of 
coupled theories were beyond the scope of this work. 
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