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Aboveground steel storage tanks are large vessels employed to store various liquids, 
including water, food, fertilizers, oil, and other hazardous chemicals.  The damage and 
collapse of storage tanks can generate long-lasting consequences on built environment 
and communities.  The seismic behavior of storage tanks is often evaluated employing 
fragility functions obtained simulating the tank under a variety of ground motion 
records.  However, the computational demand of high-fidelity simulation models 
makes risk assessment a burdensome task.  The use of data-driven surrogate models 
could represent a suitable solution to evaluate the seismic vulnerability of steel tanks 
rapidly.  In this context, this paper presents an open dataset composed of 204 
aboveground cylindrical steel liquid storage tanks with different geometric properties.  
The dataset was assembled based on past earthquake reconnaissance reports.  In the 
dataset, different types of damage experienced by the steel tanks are divided into four 
classes, ranging from no damage to complete failure.  Eight different machine learning 
algorithms are trained to predict the damage class of a steel tank as a function of its 
geometric properties and seismic excitation parameters.  Stratified 5-fold cross-
validation is used to split the dataset into training and testing subsets and to assess the 
prediction capability of the machine learning models.  Results showed that the Support 
Vector Machine algorithm yielded the most accurate predictions, followed by Random 
Forest, XGBoost, and LightBoost.  Overall, the paper demonstrated the feasibility of 
using machine learning models to predict the damage level of steel liquid storage tanks 
subjected to seismic hazard. 
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1 INTRODUCTION 

The damage exhibited by industrial facilities under recent earthquake events demonstrated that 
steel liquid storage tanks are vulnerable to seismic hazards.  Damage and collapse of steel tanks 
could lead to undesired consequences, such as large-scale spillages of dangerous chemicals, fires, 
and unavailability of clean water in the wake of the earthquake.  Modeling the behavior and 
predicting the damage of liquid storage tanks under seismic load is challenging due to the 
significant uncertainties inherent structural and hazard characteristics.  High-fidelity numerical 
simulation models (e.g., finite element models) can be employed to realistically estimate the tank 
response under earthquake loads (Korkmaz et al. 2011, Lee et al. 2019). However, their high 



El Baradei, S., Abodonya, A., Singh, A., and Yazdani, S. (eds.) 
 

 STR-53-2 © 2021 ISEC Press 

computational demand, combined with the large number of uncertainties to consider, makes risk 
assessment prohibitively time-consuming.  

Surrogate models have been proposed to speed up risk assessment procedures (Micheli and 
Laflamme 2020).  Surrogate models are simplified mathematical representations of a physical 
system and are usually employed as a replacement of the original, computationally expensive 
simulation model.  For steel liquid storage tanks, many physics-based surrogate models are 
available in the literature.  For example, Bakalis et al. (2017) employed a single-mass surrogate 
model characterized by elastic beam-elements and nonlinear springs to evaluate the seismic risk 
of steel liquid storage tanks.  Later, Phan et al. (2019) utilized a simplified model consisting of an 
equivalent single-degree of freedom system to model the dynamic behavior of an unanchored 
steel liquid storage tank and perform seismic fragility analysis considering various uncertain 
model parameters.  However, these analytical models are rarely informed by field data and lead to 
a relatively large computational demand when the number of uncertain variables to consider is 
large.  This paper presents a preliminary investigation on the use of data-driven surrogate models 
for damage identification of steel tanks, where the machine learning (ML) algorithms are trained 
based on field earthquake reconnaissance data.  Given the low computational demand of ML 
models, such an approach is suitable to rapidly assess the seismic risk of steel tanks, and it could 
be potentially integrated into a real-time decision-making framework for post-disaster 
management operations.  

The objectives of this paper are: 1) to assemble a dataset of the damage reported by above-
ground cylindrical steel liquid storage tanks under different earthquake events.  Such dataset is 
derived from existing reconnaissance reports, and it includes 204 tanks.  2) To assess the 
capability of different ML algorithms to predict the damage class of steel liquid storage tanks as a 
function of tank proprieties and earthquake parameters.  3) To identify the classification 
algorithm most suitable to estimate the level of damage in steel liquid storage tanks.  Such a 
classification model can potentially incorporate more reconnaissance data when available.  
 
2 DATA-DRIVEN SURROGATE MODELS 

2.1    Steel Liquid Tanks Dataset Description 

A dataset of 204 above-ground, cylindrical, steel liquid storage tanks was assembled from past 
earthquake reconnaissance reports available in the literature (Cooper 1997).  Both anchored and 
unanchored tanks were considered.  For each tank, the data collected consists of tanks properties, 
earthquake characteristics, and corresponding seismic-induced damage.  Tank’s properties 
include diameter (D), height (H), thickness (t), and liquid height at the moment of the earthquake 
(HL), while earthquake characteristics include magnitude (M) and peak ground acceleration 
(PGA), schematically represented in Figure 1 (a). For the majority of the tanks (158), the 
thickness was not reported in the reconnaissance report, and it was estimated based on the work 
of Cortes and Prinz (2017).  Similarly, for some earthquake events, the PGA was estimated based 
on ground motion records available in the PEER database (Pacific Earthquake Engineering 
Research Center 2020) and the geographic location of the tank.  Since the material properties of 
the steel tanks were not specified in the reconnaissance report, yielding stress and modulus of 
elasticity were assumed to be the same for all the tanks.  The steel liquid storage tanks reported 
different types of damage, such as elephant foot buckling, roof damage, shell buckling, and 
complete collapse.  Such damage types were grouped into four main classes (adapted from 
O’Rourke and So 2011): class 0, no damage; class 1, minor damage, including damage to the 
seal, minor roof damage, and in general, damage that requires simple repairs; class 2, severe 
damage, such as elephant foot buckling and shell buckling; and class 3, total failure, collapse of 
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the tank, and widely spread damage that necessitates the replacement of the tank.  The 
distribution of the steel tanks data among the four damage classes is shown in Figure 1 (b), along 
with a description of each class in Figure 1 (c).  Note that Figure 1 (c) reports the types of damage 
experienced by the steel tanks available in the reconnaissance report (Cooper 1997).  If more 
reconnaissance data becomes available, different damage modes may be considered, and the 
classes of damage types could be further refined.  The dataset used in this study is publically 
available on GitHub (Micheli 2020). 
 

 
                             (a)                                                  (b)                                             (c) 
 

Figure 1.  (a) Schematic representation of a steel liquid storage tank, where D is the tank diameter, H 
its height, t its thickness, HL is the height of the liquid, M is the earthquake magnitude, and PGA is the peak 

ground acceleration; (b) distribution of the data among classes; (c) damage classes description. 

 
Table 1.  Statistics of the collected data.  

 
 Input Minimum Maximum Mean Standard Dev. 

Steel tank  
geometry 

D  2 m 83 m 23 m 14 m 
H 3 m 45 m 11 m 4 m 
t 0.001 m 0.098 m 0.013 m 0.006 m 

HL 0 m 45 m 10 m 9 m 
Seismic  
hazard 

M 5.0 8.5 7.0 0.6 
PGA 0.02 g 2.0 g 0.44 g 0.42 g 

 
2.2    Machine Learning Algorithms 

The steel liquid storage tanks dataset was employed to train and test different data-driven 
surrogate models (i.e., ML algorithms).  Each surrogate model was constructed based on a set of 
N observations, S = {(x(i), y(i)), i = 1,…, N}, where x is the input vector and y is the output.  In this 
study, the total number of observations available is N = 204.  The inputs of the surrogate were 
selected as the tank’s diameter (D), height (H), thickness (t), liquid height (HL), earthquake 
magnitude (M), and peak ground acceleration (PGA).  Table 1 reports the basic statistics of the 
inputs available in the dataset.  Note that the material properties of the tanks were not taken as 
inputs because they were assumed to be identical for all the tanks, and therefore, would not add 
information to the data-driven models.  The output y of the surrogate model was defined as the 
damage class (0, 1, 2, or 3).  Stratified 5-fold cross-validation strategy (Viana et al. 2009) is used 
to split the dataset into training (size n = 164, 80% of N) and testing subsets (size nt = 40, 20% of 
N) and to evaluate the ML models on the limited data samples.  The training data were used to 
train the ML algorithms to estimate the damage class of a steel liquid storage tank as a function of 
the tanks properties (D, H, t, HL) and earthquake parameters (M, PGA).  The model performance 
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on predicting the damage class in correspondence of the test data was used as an indication of the 
model performance on unseen data.  

The ML algorithms investigated in this paper are briefly described in what follows.  More 
information can be found in Mangalathu et al. (2020). 

Decision Tree: it is a non-parametric ML model that estimates the value of a target variable 
by learning simple decision rules inferred from the input features.  Two steps are usually 
necessary to create a decision tree: construction and pruning.  Tree construction consists of 
dividing the training space into non-overlapping subspaces based on the information gain (i.e., 
Gini index or entropy).  Tree pruning is then performed to prune the tree from some branches and 
avoid overfitting. 

Random Forest: the model is composed of an ensemble of individual decision tree classifiers 
generated from the training set with bootstrap sampling.  Each tree classifies a given input vector 
in a certain class, casting a vote for that class.  The final prediction is selected as the class with 
most votes.  

Support Vector Machine (SVM): it consists of constructing a set of hyperplanes that separate 
two or more classes.  The optimal separation of classes is taken as the hyperplane that maximizes 
the margin distance (i.e., the sum of the distances to the hyperplane from the closest points of the 
classes) between data points belonging to two or more classes.  

Naïve Bayes: it is a parametric classifier based on the Bayes theorem.  It simplifies the 
learning process with the assumption that the features are independent from each other.  In this 
study, a Gaussian distribution is assumed as prior distribution in the Bayes theorem.  

AdaBoost, XGBoost, LightGBM Classifiers: the boosting classifiers enhance the performance 
of decision trees by generating new models that correct the errors of the previous trees.  AdaBoost 
is an adaptive algorithm, where the training weights are updated based on the misclassified data 
from previous iterations.  XGBoost and LightGBM are gradient boosting classifiers.  The 
difference between these algorithms is in the rules they use to fit the strong classification model 
to the set of weak learners.   
 
3 RESULTS AND DISCUSSION 

The performance of the algoritims was assessed with several metrics, including accuracy, 
precision, and recall.  As an example, the confusion matrices for three algorithms (i.e., SVM, 
Random Forest, XGBoost) from one of the folds are reported in Figure 2.  Each element of the 
confusion matrix Ci,j represents the number of observations known to be in class i and predicted 
to be in class j. Therefore, the diagonal elements (in green) are the classes (i.e., damage levels) 
correctly predicted by the model, while the off-diagonal elements (in red) are the categories 
classified incorrectly.  The confusion matrices also report precision (percentage of damage classes 
correctly assigned by the model), recall (percentage of actual damage classes, or true positives, 
correctly assigned by the algorithm), and accuracy (number of classes guessed correctly divided 
by the total number of guesses).  Precision and recall are local performance metrics related to 
each damage class, while accuracy is a global performance metric.  A cross-comparison between 
the confusion matrices in Figure 2 shows that the SVM model led to the highest accuracy.  Recall 
and precision highly depend on the considered damage class.  SVM yielded the largest precision 
in classes 1 to 3, and the highest recall in classes 0, 2, and 3.  Random Forest led to the largest 
precision in class 0 and recall in class 1, respectively.  

Table 2 reports the performance of the ML algorithms averaged over the 5-fold cross-
validation, including accuracy, recall (R), and precision (P) for each class (0, 1, 2, and 3).  Results 
in Table 2 show that SVM yielded the highest accuracy (68.3%) on the testing data, followed by 
Random Forest (64.5%), XGBoost (62.0%), and LightBoost (62.0%).  SVM also led to the 
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highest values of recall and precision for most of the classes, except recall in class 0 and precision 
in classes 1 and 3.  The results demonstrate that the non-parametric tree-based methods (i.e., 
Decision Tree, Random Forest) exhibited better performance than the parametric non-tree-based 
methods (i.e., Naïve Bayes).  The gradient boosting algorithms (i.e., XGBoost, AdaBoost, 
LightBoost) led to a similar performance in terms of accuracy.  Overall, the results highlight the 
importance of considering different metrics when evaluating the performance of different ML 
algorithms at predicting damage classes in steel tanks. 

 

   
                          (a)                                                      (b)                                                    (c)  
 

Figure 2.  Confusion matrix using one fold of the test set: (a) SVM; (b) Random Forest; (c) XGBoost.  
 

Table 2.   Performance comparison of the machine learning algorithms (averaged over the 5 folds).  
 

Algorithm Accuracy  
(%) 

R0 
(%) 

P0 
(%) 

R1 
(%) 

P1 
(%) 

R2 
(%) 

P2 
(%) 

R3 
(%) 

P3 
(%) 

Decision Tree 58.2 47.0 27.3 55.4 42.4 65.9 85.9 51.3 67.7 
Random Forest 64.5 84.6 37.5 60.9 75.8 66.9 83.8 67.5 79.9 
SVM 68.3 55.9 65.7 69.9 64.6 84.1 88.9 92.5 72.6 
Naïve Bayes 54.4 44.4 29.1 54.3 38.0 65.7 87.4 52.5 67.5 
XGBoost 62.0 50.1 39.7 58.5 74.7 72.1 82.9 72.5 61.9 
AdaBoost 58.2 84.6 37.5 60.9 75.8 66.9 83.8 67.5 70.9 
LightGBM 62.0 73.7 31.5 56.7 68.6 67.9 86.8 67.7 66.0 

 
4 CONCLUSIONS  

This paper presented the preliminary results of an ongoing investigation on the use of ML models 
for predicting the damage experienced by steel liquid storage tanks under seismic hazard.  A 
dataset of 204 above-ground cylindrical steel liquid storage tanks characterized by different 
geometric properties and types of seismic-induced damage was first assembled.  Then, eight ML 
algorithms were trained based on part of the data (training dataset), and their performance at 
predicting the damage class of steel liquid storage tanks was assessed on the remaining data 
(testing dataset) using stratified 5-fold cross-validation.  Results highlighted the necessity to 
evaluate different algorithms before selecting a ML model for damage classification of steel 
liquid storage tanks.  Based on its performance, the SVM appeared to be the most suitable ML 
algorithm to predict the damage class of steel liquid storage tanks.  

Overall, this work demonstrated the capacity of ML models to predict the damage class of 
steel liquid storage tanks.  Note that the proposed algorithm can be used only for tanks with 
geometric properties and earthquake parameters lying in the range reported in Table 1. 
Furthermore, the distribution of the data between damage classes (Figure 1 (b)) is imbalanced and 
more data from classes 2 and 3 are needed to improve the accuracy of the ML model.  Finally, the 
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ML model can predict only the damage class of a certain steel liquid storage tank and not the 
exact damage type (e.g., elephant foot buckling).  Future work entails improving the performance 
of the ML algorithms by providing a more balanced dataset, applying other techniques to handle 
the issue of imbalance data, exploring a larger set of inputs, and integrating the model into a 
vulnerability assessment framework where the ML algorithm rapidly estimates the damage class 
of a steel tank as a function of its characteristics and earthquake parameters. 
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