ASEA SEC 02


MECHANICAL PROPERTIES OF FLY ASH-BASED ALKALI-ACTIVATED CEMENT USING A STATISTICAL ANALYSIS TECHNIQUE

HYUK LEE, VANISSORN VIMONSATIT


Abstract

This paper presents the mechanical properties of fly ash-based alkali-activated cement (AAC). A statistical analysis method was used to determine the effect of mix proportion parameters on the dry density and compressive strength of fly ash-based AAC pastes and mortars. For that purpose, sample mixtures were designed according to Taguchi’s experimental design method, i.e., in a L9 orthogonal array. Four factors were selected: “silica fume content” (SF), “sand to solid ratio” (s/c), “liquid to solid ratio” (l/s), and “superplasticiser content” (SP). The experimental results were analysed by using signal to noise for quality control of each mixture, and analysis of variance (ANOVA) was used to determine the significant effect on the compressive strength of fly ash-based AAC. Furthermore, a regression-analysis method was used to predict the compressive strength according to the variation of the four factors. Results indicated that silica fume is the most influencing parameter on compressive strength, which could be decreased by superplasticiser and l/s ratio. There is no significant effect of sand-to-cementitious ratio on compressive strength of fly ash-based AAC. The dry density decreases as the sand-to-cementitious ratio is decreased. The increasing l/s ratio and superplasticiser dosage could further decrease the dry density of fly ash-based AAC.

Full Text (PDF)