EURO MED SEC 03


DESIGN WIND PRESSURE COEFFICIENTS FOR LOW-RISE GABLE-ROOFED STEEL BUILDINGS

SEIYA GUNJI, KOSUKE SATO, YASUSHI UEMATSU


Abstract

The present paper discusses the wind pressure coefficients for the main wind force resisting systems of low-rise gable-roofed steel buildings, based on a wind tunnel experiment and a two-dimensional frame analysis. The wind pressure coefficients should be determined so that they reproduce the maximum load effects. Here, focus is on the bending moments involved in the members as the load effects. The Load Response Correlation (LRC) method is employed for evaluating the equivalent static wind pressure coefficients. Using the time history of wind pressure coefficients, the maximum load effects were computed for all combinations of frame location and wind direction. The results indicate that the most critical condition occurs on the windward frame in a diagonal wind. The largest bending moment was compared with that predicted from the wind pressure coefficients specified in the Japanese building standards, which are based on the area-averaged mean wind pressure coefficients. Finally, more reasonable wind pressure coefficients for designing the main wind force resisting systems are proposed.

Full Text (PDF)