ISEC 10


EXPERIMENTAL EVALUATION OF SOIL REINFORCEMENTS IN UNPAVED ROAD

NAHLA SALIM


Abstract

In this study, a series of 24 laboratory tests were conducted on a footing resting on crushed stone with 17.68 kN/m3 dry unit weight overlying sandy soils of two relative densities corresponding to (60% and 80%). The subbase layer is of crushed stone with a thickness of 5, 7.5 and 10 cm. Ten tests were conducted under static load with and without geogrid. All the other 14 model tests were carried out under harmonic load which was applied in a sequence determined prior (40% of static load). Tests were conducted at (2) Hz frequency according to the loading value. The process of the loading was continued until the number of cycles reached 104. The results indicated that, for static load and with the inclusion of the geogrid, as the thickness of the subbase layer increases, the percentage of increase in bearing capacity was reduced. In general, using geogrid reinforcement with subbase thickness of 7.5 and 5 cm causes an increase in bearing capacity approximately 1.5 to 2 times greater than for unreinforced respectively. This means that by using geogrid reinforcement, the thickness of subbase can be reduced which causes a reduction in construction cost.

Full Text (PDF)