# EFFECTS OF THE INITIAL DEFLECTION SHAPE ON THE MOMENT AMPLIFICATION FACTOR OF BEAM-COLUMNS

### HARUNA UTSUNOMIYA, MASAYUKI HARAGUCHI, MASAE KIDO, KEIGO TSUDA

In the design of slender steel beam-columns, the moment amplification factor is used to estimate the maximum moment along with the longitudinal direction. While formulas for evaluating the factor have been presented on the basis of elastic or elastic-plastic analysis, the initial deflection of the column is not considered. The effect that the initial deflection on the strength and behavior of the column has been shown only when the initial deflection shape is half sine wave. This paper discusses the effect of the initial deflection shape on the value of the moment amplification factor by performing the analytical work. The analytical model is the hinged-end beam-column subjected to constant axial compressive force and end moments. First of all, the equilibrium differential equation which governs the problem is solved and the formula for calculating the bending moment is presented. In the parametric study, magnitude of initial deflection, initial deflection shape, axial load ratio, slenderness ratio and end moment ratio are selected as the parameters. In this paper, we discuss the effects of the amount of the initial deflection and the initial deflection shape.

Full Text (PDF)